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I. SUMMARY -

This is Volume IT of the two volume final report on NASA Contract
NAS T7=103. This volume presents thrust chamber design data and design approaches
for the basic engine cooling techniques described in Volume I. Data on propellants
and thrust chamber materials are included as well as additional data on space mis-
sion propulsion requirements and a bibliography of reports on rocket cooling and
related topics.

This report supplements the studies presented in Volume I by facili-
tating more detailed design studies of promising thrust chamber cooling techniques.
The readily available material referenced herein may be used to supplement this
report by providing additional detailed design and test data for specific areas of
interest. Some of the more recent and advanced research on thrust chamber cooling
is reported in the technical Jjournals listed in the bibliography.
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II, INTRODUCTION
The objectives of the program conducted under this contract were:

1. To determine the applicability and limitations of the various
thrust chamber cooling methods for liquid propellant rocket
engines used to fulfill spacecraft propulsion requirements.

2. To present thrust chamber design procedures for each cooling
technique and to provide a basis for comparing different
cooling designs on the basis of applicability, weight, per-
formance, etc.

3. To develop and present a rapid and convenient procedure for
selecting the most suitable cooling method for the various
spacecraft engine applications.

Volume I has presented the procedure for selecting the most promising
cooling techniques along with preliminary design data to facilitate an evaluation
of the limitations on each cooling method as well as permitting a thrust chamber
weight comparison to be made.

This volume presents the analytical background for these studies.
Answers are provided to such design problems as:

1. Over what thrust range can a regeneratively cooled thrust
chamber be throttled?

2. What are the effects in a radiation cooled thrust chamber
of surface emissivity, external fins, axial heat conduction
and internal reradiation?

3, How does char depth in an ablative chamber vary with pressure,
duty cycle and material formulation?

4. What are the theoretical capabilities of film and transpiration
cooling at different thrust levels and chamber pressures?

To assist in making the required heat transfer and design calculations
physical and thermal property data are presented for the various propellants and
structural materials of greatest interest. The bibliography, which is organized
by subject entries, refers to reports and articles readily available which contain
supplementary design data and test results.

Background information on space mission maneuvers and propulsion re-
quirements are included to describe the typical operational and environmental con-
ditions under which a cooling technique must operate.

UNCI ASSIFIED -2 -



MAC A3

%"lﬁﬂ.’gi 5981
UNCLASSIFIED VAN NUYS, CALIFORNIA 'mm—

III, THRUST CHAMBER COOLING METHODS

A. Regenerative Cooling

In the design of rocket thrust chambers for space mission applications,
regenerative cooling is one of the foremost methods for insuring structural integ-
rity of the components. This method is particularly well suited for long durations
of operation above the chamber pressure limit of satisfactory radiation coeling.

As a general rule, the regenerative designs require less exotic materials than do
alternate methods, and at the present state of the art exhibit a higher reliability,
They are compromised, however, by a certain degree of manufacturing complexity
associated with the cooling passage geometry. The inherently higher propellant sys+
tem pressure requirement and the attendant weight factor are also important consid-
erations in a thorough analysis.

Regenerative cooling of chemical rocket engine thrust chambers, in its
simplest form, consists of equating the heat energy rejected by the combustion
products to their enclosing walls to the heat energy that is absorbed by the cool-
ing fluid. The term regenerative implies that the cooling fluid is one or both of
the propellants used prior to injection, although the coolant flow rate need not
be the same as that supplied to the injection plate. In most instances, the fuel
is used as the cooling fluid since, for the propellant combinations under consider-
ation for space application, the only oxidizers which have any appreciable cooling
potential are nitric acid (IRFNA) and nitrogen tetroxide (NoO)). (Figure 1) There
may be, however, specific applications where the use of the oxidizer as a primary
or auxiliary coolant can be shown to be advantageous.

To produce a successful regeneratively cooled design, it is necessary
to balance the factors affecting the rejection and abscrption of heat so as to re-
sult in sound structural temperatures along with pressure losses and component
weights that are in line with the mission requirements. Among the parameters that
have to be considered in predicting heat rejection are the nozzle thrust (F),
chamber pressure (Pp), expansion area ratio (€ ), combustion zone characteristic
length (I¥*), and the propellant combination with its associated mixture ratio, per-
formance, thermodynamic and transport properties. The flow of heat into the coolant]
fluid is affected by the coolant mass velocity (flow rate per cross-sectional area
for coolant flow), temperature, fluid properties, the degree of subcooling, and
for some fluids the ratio of the wall temperature to the bulk fluid temperature.
Conditions existing across the wall of the thrust chamber are determined by the
material, its thermal conductivity, and the thickness of the wall.

The general equation covering the situation is the Newton equation
for heating or cooling, which is:

Qx = UxAx(Tg - Te)x (1)
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where
Q@ = Heat flux
A = Area for heat transfer
U = Overall coefficient for heat transfer
Tg = Forcing temperature of the heat rejecting fluid
T = Temperature of the heat absorbing fluid and x refers to

values at a specific location

The overall coefficient for heat transfer U is usually given by the
following relationship:

U = s————— (2)

where the Ry are the resistances to heat transfer.

Or the familiar case of two convective films separated by a single
wall, shown by the following equation:

U = e 1 (3)

where
h = Convection coefficient
kX = Wall thermal conductivity

]

Wall thickness

This representation is strictly true only for situations wherein the heat transfer
paths are in series. This is not the case for radiation heat transfer in combina-
tion with convective heat transfer. Thus, whenever a surface has a radiation com-
ponent that represents an appreciable fraction of the convective components, as in
very low chamber pressure applications, a slight modification must be made to the
method of analysis. This will be illustrated in the succeeding work.

In order to show qualitatively the cross-effects of the parameters re-
ferred to previously for regenerative cooling, it is necessary to look further into
the mechanisms of heat transfer and the correlating equations that are used to des-
cribe them, and to examine the rocket performance equations that determine the geoms
etry and operating range of the thrust chamber.
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Considering first the cooling side (inside the cooling passages) of
the problem, two different mechanisms of heat transfer are evident: forced convec-
tion and nucleate boiling, and three different types of fluids; stable liquids,
cryogenics, and two-phase mixtures. The forced convection to liquids and gases is
characterized by the familiar heat transfer coefficient concept. Here empirical
or semiempirical formulas are used to predict local values of the heat transfer co-
efficient based on the parameters of fluid flow, passage geometry, and fluid prop-
erties. For example, liquids are often correlated by the following Seider-Tate
equation:

n, = 0.025 A (e)8 () P(LL /0 )0 (1)

C

while for cryogenic fluids (Hg) the equation is:

h, = 0.025 %} (Re)©8(pr)0+" (Tb/TW)O'55 (5)

[¢]

By reducing these equations to groups involving properties, geometry,
and flow factors, we can examine the trends that would result from changes in vari-
ous design parameters for liquids, as follows:

J1h

e 6Tc 0.33
h, = C 6
¢ o L7 Do 2 (6)

and for cryogenic fluids, the equation is:

0.55

h, = C D (7)

Equations (6) and (7) indicate that convective coefficients are increased by in-
creasing the mass velocity and the fluid temperature. It is important to note,
however, the effect of increased wall to fluid temperature ratios. Here, the
tendency is to increase the liquid coefficients while reducing the gaseous ones.
This result follows directly from the way in which the viscosity varies as a func-
tion of temperature. Thus parametric curves indicating the effect of a single
parameter on the convective heat transfer coefficients are represented by the fol-
lowing sketches:
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Liquids Gases
Tho
‘ T Tp = const.
Hi, bl y, h,
Tb2 > Tbl Tb = const.
G Ty Ty

When the local heat transfer rates are so high as to produce wall tem-
peratures in excess of the coolant fluids saturation temperature, a heat transfer
mechanism known as nucleate boiling comes into play. Here vapor bubbles are formed
on the hot surface, they detach and migrate toward the cooler regions of the flowe~
ing fluid, where they are then condensed. In this situation, the temperature of
the wall is characterized by the coolant's saturation temperature over a wide
range of nucleate boiling heat transfer rates. The line segment BB'C in the sketch
below represents the nucleate boiling range.

Neither the coolant mass velocity (G), nor its bulk temperature have
any appreciable effect on the value of the wall temperature. Line segments AB and
A'B' represent the forced convection regime and illustrate the effect of these
parameters. The point C corresponds to the upper limit heat flux. This point is
envisioned as that at which bubbles are formed at such a rate that a blanket of
vapor tends to cover the wall completely forcing its temperature to rise drastical~
ly and usually resulting in failure. The method of design in a component utilizing
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nucleate boiling as the heat transfer mechanism is to provide values of the upper
limit heat flux capability that are everywhere in excess of the predicted local
heat rejection rates. This is a difficult procedure to describe mathematically as
there are very few correlating equations for the prediction of the upper limit heat
flux. However, a great deal of experimental information is available in chart and
tabular form that serves to illustrate the importance of fluid velocity, subcooling
(saturation temperature minus bulk temperature) and pressure, as in the sketches
shown below and in Figure 1.

Vz >V >V
V3
V2 ( Q/A) max

vy //,//””———__——_——__—_"'

(Q/8) oy

)

Subcooling Coolant Pressure

The two-phase mixtures where the fluid undergoes a change of phase
during the cooling cycle are usually treated with convection equations modified to
account for the quality of the fluid.

Heat rejection to the walls from the combustion gases is again a case
of forced convection. The coefficient of heat transfer is predicted by the follow-
ing modified Bartz equation: c

0.2 0.68
o.
n = 0.026 2 i M T ) | (8)
g T p0.2  (pp) 0.6 \Tp - Ty | He

As with the previous equation for forced convection, the coefficient is seen to
increase with increases in the mass velocity and fluid temperatures and to be af-
fected by temperature difference across the boundary layer.

1. Regenerative Cooling Considerations

a. Performance Efficiency

For the regenerative cooling parameter studies in this
program a performance efficiency of 100% shifting equilibrium was utilized. Re-
ductions in performance level have, in general, only minor effect on the cooling
circuit design features. For instance, a 5% loss in C* efficiency would bring
about approximately 8% lower heat transfer rates and 5% greater total heat absorb-
ing capacity. Hot wall designs, i.e., radiation and ablative cooling, exhibit
greater sensitivity to efficiency due to the proportionately smaller temperature
difference across the boundary layer.
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b. Mixture Ratio (O/F by Weight)

Selection of a rocket engine operating mixture ratio is the

the overall spacecraft system and mission requirements. Thus each specific under-
taking is quite likely to produce a slightly different ideal mixture ratio. Due
to this flexibility the mixture ratio of 1.2 selected for the NQOu/NgHu propellant
combination represents only a single example of many possible realistic solutions.
For this propellant combination the value of 1.2 corresponds to the near maximum
levels of performance (IS ) and combustion temperature. Table I illustrates the
effect of changes in the mixture ratio on the local heat flux rates and total
cooling potential for the propellant combinations considered herein. For a tem-
perature limited coolant, such as hydrazine, the allowable heat rejection rate is
limited by the total cooling potential, and hence, the nozzle size, or surface
area cooled is limited.

¢. Chamber Characteristic Length - I¥*

The combustion chamber characteristic length, defined as the
chamber volume divided by the nozzle throat area, is an empirical factor frequently
used in the design of rocket engines. Since this factor affects directly the geom
etry of a combustion zone some systematic method of I* selection is necessary to
permit further investigations. Data pertaining to many thrust chamber designs
were correlated in Figure 13 of Volume I, by a plot of I* as a function of nozzle
throat area. It is not possible at this time to analytically predict L¥ require-
ments or to correlate them empirically for such factors as mixture ratio, chamber
pressure, propellant, etc. However, the available data did seem to point out that
the I* falls between 15 and 35 inches and generally increases with nozzle throat
area. For this reason Figure 13 of Volume I was taken as the basis for all calcu-
lations dealing with combustion chamber geometry. For temperature limited cool-
ants an increase in I¥ requires a corresponding reduction of the exit nozzle sur-
face area which can be cooled so as to maintain a maximum heat transfer.

d. Nozzle Expansion Area Ratio - €

In preparing this report a large number of combinations of
thrust and chamber pressure were considered. So that a discrete value of nozzle
throat area could be assigned to each combination, a standard nozzle expansion
ratio, and hence, thrust coefficient had to be assumed. Thus, a nozzle € of L40:1
was taken as the basis for all calculations. If, for a temperature limited cool-
ant such as hydrazine, an € of L0:1 is not attainable by regenerative cooling
some form of uncooled nozzle extension is postulated.
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e. Nozzle Surface Area

All nozzles considered in this study were 75% bells having
an initial expansion angle of 30° and an exit divergence angle of 10°. The sur-
face areas of all nozzle satisfying these requirements are given in Figure 2 as
a function of throat area and expansion ratio. Incremental surface areas are ob-
tained by subtraction of the corresponding values. Surface areas upstream from
the nozzle throat are correlated in Figure 3 as functions of contraction ratio and
nozzle throat area. The combustion chamber I* relations, as previously discussed,
are inherent in this set of curves.

f. Cooling Circuit Configuration

The coolant passage flow configuration must be tailored to
the specific requirements of the propellant combination. For incompressible cool-
ants such as hydrazine and Aerozine 50 a two-pass system is usually employed. In
a two-pass system, one half of the surface area is cooled by the coolant as it
flows through alternating tubular passages from the injection end of the thrust
chamber toward the nozzle exit plane where the flow reverses and cools the remain-
ing half of the surface area on the return pass to the injector plate. Primary
advantages of the two-pass cooling system are an effective doubling of the flow
area for the same coolant velocity resulting in larger passage dimensions, and
the elimination of large manifolds on the expansion nozzle bell. The disadvan-
tages of this system are limited to a larger pressure -drop due to the longer ef-
fective length of passage.

Compressible coolants, such as hydrogen, requiring much
higher velocities have a correspondingly higher pressure drop for two-pass cooling
systems. In addition, the heat transfer coefficient for hydrogen increases as the
fluid temperature rises. Since hydrogen is normally tanked at sub-critical tem-
peratures (60°R) the cooling of high heat fluxes associated with nozzle throats
would not be feasible at this inlet temperature. For these reasons, the hydrogen
coolant is introduced downstream of the nozzle throat at as low an expansion area
ratio as is practical from the standpoint of local heat transfer rates. The fluid
cools a portion of the expansion nozzle, reverses direction, and cools the remain-
ing nozzle area as it passes on to the injector plate. Thus the hydrogen is well
removed from the critical temperature region when exposed to the high heat fluxes
at the nozzle throat.

Since the supply and distribution manifolding for hydrogen
are much larger than the similar items for denser fluids placing of the manifold-
ing at the lowest possible expansion area ratio is relatively important from a
weight standpoint. .

In summary, for the purposes of this study a two-pass cooling
system was assumed for hydrazine and Aerozine-50 while a pass and one-half flow
system was used for the hydrogen cooled motors.
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g. Pressure Losses

An accurate calculation of the cooling circuit pressure drop
cannot be made without specifying in some detail the cooling passage geometry.
This detail would include not only the passage configuration at the critical noz-
zle throat region but at several intermediate positions along the length of nozzle
and combustion chamber as well. Since the specification of such a vast amount of
detailed design information is beyond the intention of this study a rule of thumb
approximation has been substituted for actual pressure drop calculations. This
approximation considers that the coolant circuit pressure loss 1s equal to twice
the coolant velocity head at the nozzle throat. Figure i shows the velocity head,
expressed in lb/sq in. as a function of the coolant velocity in ftyfisec, for a .
density of 56 lb/ft5. Correction for other densities is accomplished by inverse
ratio. When limited to incompressible fluids the method should have an accuracy
of about 10 to 20%.

An IBM TOL computer program, available for the hydrogen cool-

ing phase of this program, allowed accurate calculations to be made for the com-
pressible flow pressure drops. *Both total pressure and Mach number distributions
were available for all hydrogen cooling correlations.

Whenever the pressure loss through the injector plate was of
any significance, as for the prediction of coolant supply pressure, it was assumed
for comparison purposes that a satisfactory injector design could be produced hav-
ing a pressure drop of 10% of the combustion chamber pressure. THis assumption. may
be, modified asiwarranted by specific considerations 'discussed lateér 'in this" report.

2. Specific Considerations for the Ngou/NgHuPropellant Combination

a. Local Heat Rejection Rates

As stated previously the wall temperatures of a cooling
jacket transferring heat by nucleate boiling is characterized by the saturation
temperature. Therefore, the Bartz (Reference 190) relationship for film coeffi-
cient can be solved directly without iterative procedures. Since the coolant sat-
uration temperatures are very low in respect to the combustion temperatures, smalll.
errors in wall temperature will have a very negligible effect on film temperature
drop and hence heat transfer rates. In the areas of the .coolant Jjacket where nuc-
leate boiling does not exist, the wall temperatures produced by the convective
cooling coefficients are by nature below the saturation temperature. So the dif-
ference between combustion temperature and wall temperature is even greater and
slight errors Bsve even less of an effect on heat transfer rates. »

Thus it is apparent that whenever the primary mode of heat
transfer to the coolant is nucleate boiling the calculation of local heat transfer
rates becomes a direct solution of the combustion gas film coefficient using the
Bartz, or some other suitable relationship.
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b. Total Heat Capacity

One well known feature of hydrazine is its monopropellant
capability. Its tendency toward self-propelled, explosive decomposition at ele-
vated temperatures makes its use as a coolant for rocket engines a difficult prob-
lem. Due to these characteristics, the overriding consideration in a cooling sys-
tem design with hydrazine is the maximum coolant temperature. Since it is a tem-
perature limited fluid the conclusion follows that there exists a maximum total
heat absorbing capacity.

When this property is related to specific chamber parameters
such as thrust, chamber pressure, and performance the limit can be expressed in
terms of maximum motor surface area. Two parameters necessary in determining the
maximum cooled surface area are the nozzle contraction and expansion area ratios.
The chamber L¥*, as determined from the nozzle throat area, coupled with the con-
traction ratio specifies the surface area upstream from the threoat while the ex-
pansion area ratio fixes the surface area downstream from the throat.

To accomplish the above results it was necessary to complete
a stepwise integration process of the motor surface area and the local heat flux
values. Computations were made for two different contraction area ratios and
that with the lowest total heat transfer was selected. Using combustion chamber
surface areas as defined in Figure 3 it was determined that the total heat trans-
fer to contraction area ratio chambers of 2 and 4 were identical at a nozzle
throat area of 200 in.2. Thus a contraction area ratio of L4:1 was used for throat
areas less than 200 in.2 while 2:1 was used whenever the throat area exceeded 200
in.2. This serves to mifimize heat transfer to the combustion chamber thereby
allowing for larger nozzle expansion area ratios. The resulting maximum coolable
nozzle expansion area ratios are presented in Figure 5 as a function of thrust and
chamber pressure.

A great many factors have bearing on the maximum temperature
to which hydrazine can be heated. Among them are the pressure, materials in con-
tact with the fluid, contaminants that may be present, and local heating rate. A
value of 350°F has been established as the upper limit for purposes of this study.
At chamber pressures below 100 psia a modification has to be made in the maximum
hydrazine temperature limit. Since, at these low pressures the saturation temper-
ature is less than 350°F, it must be used as the criteria for establishing the
maximum heat capacity of the coolant rather than the higher thermal decomposition
value. :

The effect of additives to inhibit the thermal and catalytic
decomposition of hydrazine has received much study in recent years. Most promising
among those additives extensively reported is ethylenediamine (EDA). A mixture
of 90% hydrazine and 10% EDA serves to effectively inhibit thermal decomposition
without seriously compromising either performance or heat transfer. While all
conclusions of this study are based on commercially pure hydrazine, substitution
of a 90/10 mixture should produce no major changes.
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c. Designing for Local Heat Transfer Rates

A second characteristic feature of a hydrazine cooled rocket
engine is the absorbing of heat through the mechanism of nucleate boiling. As
previously described, nucleate boiling consists of the formation of vapor bubbles
on & heated surface followed immediately by their rapid collapse in tthe surround-
ing sub-cooled liquid. Since, due to the nature of the heat transfer mechanism,
the temperature of the heated surface is maintained at or slightly above the cool+
ant saturation temperature, design of the cooling circuit reduces to the matching
of local coolant velocity and heat transfer rates.

A great amount of experiment has gone into the graphical and
mathematical correlation of nucleate boiling data. In general, each is valid for

only a limited range of conditions. The JPL correlation for hydrazine has been
used throughout this study. It consists of the following equation:

2
Qul g - 0.236 P—é-7g—75-> 6.0 + 0.246V- T (0.015 + 2.7 x 10~ % V) (9)

For
100 <« P < 1200 psia
1.0< V< 93 ft/sec

67 < T < 34T°F

Where
EE} - Maximum heat flux to coolant Btu/sq in. sec
P = Local pressure psia
V = Local velocity ft/sec
T = Local coolant temperature °F

Before a comparison is made with the predicted local heat rejection rate from the
combustion gases, the maximum local heat flux to the coplant should be divided by
a safety factor of 1.7. This factor stems from a combination of the uncertainties
associated with both the film coefficient and upper limit heat flux correlations.
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Coolant velocity requirements at the nozzle throat as deter-
mined from Equation (9) are presented in Figure 6 as a function of thrust and
chamber pressure.

Of primary importance in selecting a coolant technique for a
rocket engine system is knowledge of the required propellant supply pressure. The
cooling jacket pressure drop is a parameter associated with regeneratively cooled
systems that has strong bearing on the entire design procedure. As previously dis=~
cussed the jacket pressure loss has been assigned a value equal to two velocity
heads at the maximum coolant velocity. This relationship is shown in Figure 4 for
a fludd density of 56 lb/ft5. Based on the requirements for maximum cooling veloc-
ity as stated above, Figure T illustrates the coolant (fuel) supply pressure as a
function of thrust and chamber pressure. An injector pressure drop of 10% of cham-
ber pressure level has been included in‘the figures.

d. Coolant Jacket Geometry

Once the coolant flow rate, velocity, temperature, and pres-
sure have been established, the required cross-sectional area of the cooling Jjacket
follows directly from the continuity equation. The problem of designing a cooling
jacket consists simply of distributing the total area around the circumference of
the nozzle in a manner consistent with manufacturing capabilities.

The actual passage shape (minimum width and width to height
ratio) has little effect on heat transfer. Secondary effects such as two-dimensiond
al heat conduction in passage walls and boundary layer variations in corners have
been ignored in this study. Consequently, all considerations leading to limits on
ccolant passage shape are derived from stress and manufacturing criteria. The
primary limitations bearing on all passage shapes are the minimum height to width
ratio of 1.0 (square passages), a minimum dimension of 0.06 inch and a minimum wall
thickness of 0.0l inch.

Based on these limitations an expression can be developed to
relate basic thrust chamber dimensions to basic coolant passage dimensions. This
expression is:

%=X+Mt (ﬁix>=x-ut (1-—%) (10)

Where
Acj = Coolant jacket cross-sectional flow ares
D = Chamber diameter
= Coolant passage external dimension
t = (Coolant passage wall thickness
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Equation (lO)is based on square passages having a wall thickness of 0.01 inch. The
variation of these factors is illustrated in Figure 8 where a plot of Equation (10)
is shown. Considering the basic assumption of 0.06 inch minimum passage dimension,
and a two-pass flow system, a minimum passage factor of 0.0265 is indicated. Re-
gions of passage height greater than width (B > X) and less than width (B < X) are
also shown.

This illustration defines, without the need for detailed anal-
ysis, the coolant jacket construction limitations in terms of available thrust
chamber design information. Continuing one step further, the passage factor (ch/
7I'D) can be correlated against chamber pressure and thrust as shown in Figure 9.
All points in the region above ch/7fD = 0.0265 are possible from a cooling jacket
geometry standpoint. Given a value of passage factor from Figure 9 based on a
thrust and chamber pressure combination, the individual passage dimension can be
determined by the data in Figure 8. ©Possible solutions lie in the range B > X,
betwe?n the)minimum practical dimension (assumed) and the maximum allowable dimen-
sion (B = X).

All of the above discussion is based on longitudinal, two-
pass cooling systems. Minor considerations given to helical wrap cooling Jjackets
did not point out any areas of operation forbidden to longitudinal designs. The
inherent disadvantages of helical wrap chambers for high pressures and large noz-
zle expansion area ratios seem to preclude further investigation.

e. Effect of Cooling Smaller Expansion Area Ratios

Referring back to Figure 5 it is apparent that at thrusts of
10K and above, nozzle expansion area ratios greater than 30:1 can be regeneratively
cooled. There are many reasons why the desire should exist (reduction of pressure
drop, cost, etc.) to only cool smaller expansion ratios, 10:1 or 15:1 for instance.
What will be the effect of this on the results of this study?

The lower coolant temperature rise, as a consequence of less
total heat transfer, will result in a lower velocity requirement, which in turn
allows a larger more easily constructed coolant passage. Two examples of the re-
duction in coolant velocity that can result from reducticns in the cooled area
ratio are shown in Figure 10.

f. Applicability Map for NoOy/NoH)

_ To better illustrate the limits imposed on regenerative cool-
ing by the previous discussion the major parameters are plotted jointly on a grid
of chamber pressure and thrust. Lines of maximum coolable nozzle expansion area
ratio, required coolant supply pressure, and the lines of maximum coolant passage
width are superimposed in Figure 11.
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The area above and to the left of the line of minimum passage
width represents a region that is not possible for the Nzou/NeHh propellant combin-
ation. A supply pressure of TOO psia is considered as the maximum practical for
the type of propulsion systems under consideration here. Since nozzles cooled to
expansion area ratios of less than 5:1 will have limited application in space pro-
pulsion programs, this represents a third limit on the envelope of feasible regen-
erative cooling with N5Oy/NoH,.

g. Throttling Potential

(1) Heat Transfer

In the investigation of throttling for an NpoH) cooled
thrust chamber several items became apparent. First was that the thrust chamber
design should be based on the minimum thrust, and chamber pressure, and the thrust
range capabllity based on uprating the engine. Limits of throttling potential from
a heat transfer standpoint are shown in Figure 12. Thrust level was seen to play
only a minor yrole. Uprating of an engine is basically a coolant pressure limited
process. At coolant pressures sufficiently high the pressure term in Equation (%)
caused the cooling margin safety factor to fall below 1.7, thereby establishing
the limit illustrated in Figure 12.

(2) Supply Pressure

Of equal importance in limiting throttling is the supply
pressure requirements. These are given in Figure 13 at the LK thrust level as a
function of chamber pressure and throttling (uprating) factor. Depending on the
maximum desired supply pressure this limit can be more restrilctive than the heat
transfer limit.

3. Specific Considerations for the NpOy/Aerozine-50

Propellant Combination

In general, Aerozine-50 (50% UDMH/50% NoHy) exhibits the same
properties and limitations as NoHL. Both utilize nucleate bolling as the primary
mode of heat transfer and both are heat capacity limited coolants. All of the de=-
sign plots discussed in the previous section as necessary for NpH), cooling are also
required for an Aerozine-50 cooling design. Specific reference, in thils section,
will be limited to the difference between the two coolants.

a. Local Heat Rejection Rates

Due to the properties of the combustion products (primarily
specific heat) the local heat transfer rates for NgOu/Aerozine-5O are less than
those of NgOu/NgHu. The higher vapor pressure of Aerozine-50 results fn lower wall
temperatures within that portion of the cooling jacket undergolng nucleate boiling
heat transfer.
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b. Total Heat Capacity

Since liquid Aerozine-50 exhibits no thermal decomposition
temperature within the range of interest its maximum temperature is determined
directly from its vapor pressure and saturation temperature relationship. This
fluid property is included in the section on fluid properties.

c. Designing for Local Heat Transfer Rates

The correlation of coolant velocity requirement with local
heat transfer rate, temperature, and pressure for Aerozine-50 was accomplished by
the use of graphical rather than mathematical data. These plots are considerably
limited in the temperature and pressure range to which they apply. Extrapolations,
particularly to low pressures (below 200 psia) end high temperature (above 250°F)
will introduce uncertainties based on current data. The safety factor as based on
coolant capability and local heat rejection rate has been maintained at a level of
1.7. For regions requiring large data extrapolation an increase in this safety
factor might be warranted.

Since Aerozine-50 is a less efficient coolant than NoHj
based on coolant velocity requirement, the cooling jacket pressure loss and hence
supply pressure requirements are greater. Supply pressure as a function of cham~
ber pressure and thrust is given in Figure 16.

d. Applicability Map For NpoOy/Aerozine-50

The coolant supply pressure requirement, maximum coolable noz-
zle area ratio, and the minimum allowable coolant passage width have been super-
imposed onto a grid of nozzle thrust and chamber pressure in Figure 18. As for
the previous propellant combination' this illustration clearly indicates the regions
wherein regeneratively cooled chambers are not feasible.

e. 'Throttling Potential

Very little throttling potential is evident for Aerozine-50
cooled thrust chambers over the range investigated. In all cases the coolant cap-
ability failed to keep pace with the rise in heat transfer rate as the chamber
pressure was increased. Limited derating may be possible when the design nozzle
expansion ratio is only a small part of the maximum allowable expansion area ratio.

4. Specific Considerations for the OpHoPropellant Combination

a. Local Heat Rejection Rates

Regenerative cooling with hydrogen:utilizes the convection
mechanism of heat transfer. Since neither the wall temperature nor the heat flux
can be assumed beforehand, an iterative solution of the problem is required. A
simplification can be achieved by assuming a maximum wall tempersture value and de-
signing on that basis. An IBM 704 computer program was used to conduct the
analysis.
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b. Total Heat Capacity

Hydrogen is not a heat capacity limited coolant. That 1is,
the temperature of hydrogen can be raised to any desired level without degradation
of its cooling potential. Practically, of course, the fluid temperature must be
lower than the desired maximum structural temperature. A value of 1000°R, as a
maximum hydrogen temperature for regenerative cooling, and a 2000°R wall tempera-
ture adjusted for temperature drops across the passage wall and film were chosen
for the parametric studies. Values of hydrogen enthalpy rise greater than the
value corresponding to 1000°R would inlfiicate reglons wherein regenerative cooling
with hydrogen would be undesirasble. Enthalpies are used rather than temperatures
due to the variation of specific heat with pressure and temperature. Values of
this cooling potential factor are plotted on the applicability map for hydrogen to
be discussed later in this report.

The degradation of cooling potential at elevated coolant tem-
peratures is a common property among coolant fluids. However, an interesting fea-
ture of hydrogen regenerative cooling involves the difficulties resulting from too
low rather than too high a coolant temperature. At local coolant temperatures be-
low 300°R, the convective film coefficient is very sensitive to changes in coolant
temperature. So sensitive, in fact, that a small reduction in coolant temperature
at a fixed design depndition will reduce film coefficients sufficlently to bring
about a rise in local wall temperatures. Thus, any change in operation or design
parameters causing a reduction in inlet coolant temperature would, if not compen-
sated for, result in increased wall temperatures. This is in direct contrast to
most coolants (hydrazine, RP-1, water) where the coolant temperature has little
effect on nozzge wall temperatures. An example of the effect on nozzle throat
wall temperatures of changes in the cooled nozzle expansion area ratio 1s given in
Figure 19. All factors are held constant including the coolant flow rate per unit
area. Only the inlet coolant temperature profile is varied.

Some indication of the rapid rise in wall temperatures at
very high fluid temperature is given in Figure 2k, . Above TOO°R fluid temperature,
the wall temperature ris€s rapidly with further increases of coolant temperature,
whereas below TOO°R it had been decreasing. This plot was introduced to show the
effect of throttling, as discussed later, but also serves to illustrate this point|

c. Designing for Local Heat Transfer Rates

In designing for convective cooling, the coolant velocity is
varied until a satisfactory wall temperature is produced. For a compressible
fluid, such as hydrogen, it is more convenient to use the mass velocity term (coold
ant flow per unit cross section area) rather than the velocity. A correlation of
coolant mass velocity versus chamber pressure is shown in Figure 20 and 1s seen to
be independenttBfinozile. thrust level.
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Frictional pressure drop and coolant veloclty were calculated
by the IBM TO4 computer program referred to previously. It is assumed that the
entire momentum of the coolant discharged from the coolant jacket is lost in the
form of pressure drop. Injector pressure drops continue on the same basis as be-
fore, being 10% of design chamber pressure. The required hydrogen supply pressure
is given in Figure 21 as a function of chamber pressure and thrust.

d. Coplant Jacket Geometry

Tndividual coolant passage geometry is correlated in the
same manner as before and presented in Figure 22.

e. Applicability Map for OoHo

Supply pressure, coolant enthalpy rise factor, and coolant
passage dimension illustrate reasonable design solutions for OoHo systems in Fig-
ure " 23.

f. Throttling Potential

A thrust chamber designed to operate at a maximum level of
wall temperature will have no capacity for increases in chamber pressure. Derat-
ing, however, is quite feasible and over a wide range of pressure. Shown in Fig-
ure 24 is the derate throttling capability of a specific design. A chamber pres-
sure reduction by a factor of ten is possible before the wall temperature again
starts to rise.

Chambers designed to operate nominally at wall temperatures
less than 2000°R will exhibit both uprate and derate capabilities. This 1s 1illus-
trated in Figure 25 where variations in wall temperature for several designs are
presented over a wide range of chamber pressures.

B. Radiation Cooling

1. Design Concept

The principle of radiation cooling is quite simple. It depends
on the use of a thin combustion chamber wall which is heated by the combustion gas
to an equilibrium temperature at which the heat radiated to space from the wall
equals the heat transferred to the wall from the combustion gas. Materials with
fairly high thermal conductivity are desirable to avoild overheating the inner sur-
face of the wall.

The limits of applicability of radiation cooling, as affected by
motor thrust, burning time, chamber pressure, propellant combination, and mixture
ratio, depend on the maximum permissible temperature of available structural mater-
ials. Except for the expansion skirt, most portions of a radlation cooled motor
will be above 2200°F. With the exception of pyrolytic materials, such as pyrolytid
graphite, the only materials with the necessary ductility, strength, and thermal

UNCLASSIFIED - 18 -



MAC A3

W brquandt 61
UNCLASSIFIED VAN HUYS. cALlrOmA o

conductivity to meet the requirements of a radiation cooled motor above 2200°F are
the refractory metals, such as tungsten, molybdenum, and columbium. These metals,
however, will be rapidly oxidized by liquid rocket exhausts containing water vapor,
carbon dioxide, or any free oxygen, unless protected by a suitable coating. Thered
fore, one of the most important limits for radiation cooled motors 1s found to be
the operating temperature limit of these coatings (See Figuresl52’ and 153 and
Table XIV). ‘

Equilibrium wall temperatures of a radiation cooled motor can be
easily calculated, as a first approximation, by assuming that all portions of the
motor wall have a shape factor of 1.0 for radiation to space, do not exchange
radiation with other portions of the motor, and are not affected by conduction in
the motor walls. Using these assumptions, a convenient way of predicting equilib-
rium wall temperatures is by cross-plotting the combustion gas convective heat
flux to the motor walls and radiation from the walls to space versus wall tempera-
ture. Such cross-plots are shown in Figures 26 through39 . The intersection :
points rqpresent equilibrium wall temperature for various expansion ratios and for
various values.of the radiation factor, which is defined as follows:

F. = FJF, (dimensionless) (11)
Where
Fe = Emissivity factor
Fa = Effective shape factor

The emissivity factor will equal the emissivity of the outer sur-
face for radiation to space, but will be affected also by the emissivity of the
surroundings if a radiation.shi€ld or heat sink is placed near the motor.

The effective shape factor is 1.0 for a thin wall without intern-
al radiation and axial conduction. For symmetrically thick walls, the effective
shape factor would be increased by the ratio of outside to inside diameter. Ex-
cept for very small motors (less than 1.0 inch diameter) the advantage of a thick
wall would be more than offset by the increase in weight and wall temperature
gradient.

Axial heat conduction can appreclably reduce wall temperatures,
at the throat, and this effect could also be thought of as an increase of effec-
tive shape factor.

Internal radiation exchange also effects the equilibrium wall
temperature, and this has been evaluated in terms of effective shape factors for
the expansion nozzle.
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2, Conduction Effects

a. Radiation Fins

One way to increase the effective shape factor is by use of
external radiation fins. Two radiation fin configurations which were analyzed

are shown in Figure 40.

The thermal conductivities of several refractory metals of
interest for radiation cooled motors are showm in Figure LO . There is a large
difference in the reported values for pure molybdenum and 0.% titanium-molybdenum

alloy.

Maximum equilibrium temperatures of the combustion chamber
when using the two fin configurations are compared in the table below with the
temperature which would be predicted for a very thin wall (i.e., a perfect con-
ductor).

Configuration Material Maximum Chamber Temperature

(°F)

Thin wall Perfect Conductor 3076
No. 1 (Six fins) 0.5% Ti-molybdenum 2957
Pure Tungsten 2908

Pure Molybdenum 2902

No. 2 (Equilateral triangle)|0.5h Ti-molybdenum 2963
Pure Molybdenum 2876

The two fin configurations analyzed are not necessarily the
most effective in #mproving radiation cooling, but a reduction of 200°F is shown.

b. Axial Conduction

Reduction of maximum motor temperatures at the throat is
possible by distribution of some of the throat heat flux to other parts of the
motor by thermal conduction in the motor wall, Followed by radiation to space.
This results in a somewhat higher temperature at locations adjacent to the throat,
but this is more than offset by the advantage of lowering the maximum temperature,
which is usually the limiting factor in the operation of radiation cooled motors.

The effectiveness of this distribution of heat by conduction
is greatest for those cases in which the local heat flux from the combustion gas
to the motor wall changes most rapidly with axial distance from the throat, which
means that this effect will increase with decreasing throat diameter.
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3. Study of a 100-Pound Thrust Motor

A motor which delivers 100 pounds thrust at a chamber pressure
of 100 psia was analyzed, using three different wall thicknesses at the throat,
as shown in Figure L41. Calculations with the IBM TO4 thermal analyzer program
were made for two metals: 0.5% Ti-molybdenum alloy, and pure tungsten. The re-
sults are shown in Figure 42. Tungsten has a decidedly. lower maximum temperature
because of its much higher thermal conductivity. However, the thermal conductiv-
ity of the 0.5% Ti-molybdenum alloy is based on extrapolated data above 3000°F.
The thermal conductivity data for pure molybdenum, on the other hand, show values
as high or higher than those for pure tungsten. Therefore, the temperatures for
tungsten in Figure 42 are_good approximations for pure molybdenum.

4. Two-Dimensional Flow Motor

The two-dimensional flow motor shown in Figure 43 was also anal-
yzed on the thermal analyzer, using a 0.1 inch pure tungstén wall: throughout. The
same combustion chamber conditions were used as for the 100-pound thrust motor,
and the maximum wall temperature was calculated to be 5236°F, as contrasted to a
thin wall temperature, ignoring conduction distributionyof 4309°F. This very
large decrease in maximum wall temperature was caused by the rapid change in the
local heating rate resulting from the very small diameter. This scheme may be
of importance in plug or separation nozzles as shown in Figure 44 , and also in-
dicates that very small thrust motors could be radlation cooled even though the
theoretical temperature at the throat, ignoring the conduction effect, might be
far in excess of allowable temperatures for available materials.

It was taken for granted that the largest obtalnable emissivity
of the outer motor surface would be used. An emissivity of 0.8 was used for all
of the conduction studies.

5. Internal Radiation

The effect of internal radiation exchange within the expansion
nozzle for a U40:1 expansion ratio was determined by calculating effective radia-
tion shape factors for heating rates which ¥ould produce throat temperatures from
2500°F to 4500°F. Two flame temperatures, 464O°F and 6000°F were used, and it
was found that the effective shape factors were greater than 1.0 and almost con~
stant at any expansion ratio, being only slightly affected by heating rate, as
shown in Figure 45. Effective shape factors for 46LO°F and 6000°F flame tempera-
tures are practically identical. Wall temperatures with and without considera~
tion of internal radiation exchange are shown in Figures 46 and 47 for flame tem-
peratures of 4640°F and 6000°F, respectively. The throat convective heatimg
rates were chosen arbitrarily, and the local heating rates in the nozzle weTe
assumed to be proportional to the factor (Ax/A)0-9. Shape factors for internal
radiation between various parts of the nozzle were calculated by an IBM program
based on shape factor relationships derived from Reference 211.
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6. Experimental Data

Experimentally measured wall temperatures are available for two
radiation cooled motor configurations: a 25-pound thrust motor operating at a
chamber pressure of 100 psia and a 100-pound thrust motor (Figure 48) operating
at a chamber pressure of 90 psia. The combustion chamber and throat temperatures
were about equal (2700°F) for C* efficiencies of about 90%. Much higher wall tem-
peratures would be predicted analytically, even including the axial conduction and
internal radiation effects. The differences between predicted and measured temper-
atures in small thrust chambers is attributed to the local flow conditions in the
vicinity of the injectors. Here, local O/F mixture variations, temperatures, vel-
ocities, and boundary layer structure cannot be characterized by the normal heat
transfer analytical equations.

Measured temperatures in the expansion nozzle were close to pre-
dicted temperatures.

C. Ablative Cooling

1. Design Concept

The two types of ablative thrust chamber liners which are usually
considered are as follows:

a. Plastic materials embedded in a structural matrix or plastics
which themselves form the inner thrust chamber contour and which ablate at a fairly
fast rate so as to act as an insulator and also as a protective film for the rocket
throat downstream from the ablative material. ’

: This concept has. been studied and tested for a number of years
(References 91, 111, 114, and 203) particularly for solid rocket application. This
concept, although simple, involves relatively large mass ablation rates and run
times for significant cooling have been limited to 15 to 30 seconds.

b. The more promising concept is the ablative liner of reinforced
plastic that performs well as an insulator while resisting erosion and melting in
a high temperature gas environment. This type of liner has been tested extensively
at Marquardt (References 173 and 176) as well as at other agencies (References 89,
109, 114, and 204) for use with liquid propellants.

Using oriented silica reinforced phenolic as a liner material,
burning time of over 300 seconds and even up to 22 minutes have been reported by
other agencies. However, the requirement, for careful design of the injector is
indicate? by reports of burnouts in 2 seconds with a hydrogen-oxygen motor Refer-
ence 121).
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A large variety of reinforced plastic combinations have been
developed by the plastic industry and many combinations have been tested including
phenolics, silicones, epoxies, and rubbers reinforced with silica, glass, zirconia,
graphite cloth, and carbon cloth. However, for liquid engine application, the
oriented silica fibers in phenolic have consistently shown superior performance.
This has been attributed to the very viscous molten silica film which forms over
the charred surface¥.

Silica reinforced phenolic has been tested as a throat material
and has shown considerable promise (Reference 204) for particular injector config-
urations. Normal erosion for small motors would be gquite serious, while in tests
on the larger motors, such as those reported in Reference 89 for lower pressures,
the effect of small erosion rates in the throat could be acceptable.

A number of studies have provided an analytical approach to the
ablation phenomena (References 103 and 112). Using these analyses to correlate
the available data with the proper operational parameters such as pressure, local
velocity, gas temperature, and plastic composition, it is believed that a rational
design can be developed. The current method of calculating reinforced phenolic
wall thickness is to use a predicted char depth, plus erosion rate, plus an un-
charred material thickness at the end of burning.

The state of the art is such that each material vendor and engine
fabricator has developed his own recommended design criteria, while improvements
in resin systems and fabrication techniques cause continuing changes in design ap-
proaches. However, most of the recent developments have not increased the basic
capabilities of the reinforced plastics, but rather have provided solutions to
particular design probelms. A discussion of these problems and their possible
solutions are presented below for the silica-phenolic ablatives and others as in-
dicated.

2. Ablative Thrust Chamber Design Approaches

a. “Influence of Operational Parameters

(1) Propellant

The most satisfactory ablative performance with silica-
phenolic has been attained with the NQOu/hydrazine based fuel combinations. Groov-
ing and eroding of nozzles and chamber walls appears to be sensitive to oxidizer

* Char and char depth as discussed in this section refers to the stable carbon
residue resulting from the thermal degradation of the phenolic resin. The
char depth refers to the boundary between the virgin phenolic and the completely
degraded carbon residue which may in turn be reinforced with the silica fibers.
This is indicated by temperature measurements of approximately 800°F for typical
phenolic systems.
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and fuel digtribution so that local O/F ratios do have an effect on ablative per-
formance. The thermal pyrolysis products of phenolic charring include hydrogen and
methane in addition to the carbon char residue. Therefore, the heating rate of
the ablative surface could be affected by reaction with a local oxidizer rich mix~-

ture at the wall.

Carbon cloth and nylon reinforced phenolics are being
evaluated for use with fluorine based oxidizer systems (Reference 207) .

(2) Chamber Pressure

Although increasing chamber pressure increases the local
heat transfer rates almost proportionately and heat transfer rates in a nozzle
throat may be four times greater than in the combustion chamber, charring rates
appear to be almost constant over a wide range of chamber pressures and local heat
transfer coefficients. However, on the same basis, erosion rates or surface re-
gression rates are influenced by these parameters and limit the applicability of
these materials in nozzle throat sections.

(3) Thrust (Or Engine Size)

Char rates and surface erosion effects in the combustion
region ahead of the throat are applicable over a wide range of chamber sizes
(thrust levels of 25 to 2000 pounds under development at Marquardt). A char rate
correction factor applicable to very small chamber diameters has been developed in
Reference 88 and is shown in Figure L9. Of course, identical linear erosion rates
in a small or a large thrust chamber throat would have a markedly different effect
on relative throat area increase, and thus chamber size becomes a design factor for
ablative throat applications.

(4) Run Time and Duty Cycle

Char depth versus running time is presented in Figures
50, 51, and 52 also Figure 8 of Volugt I. The accumulated run time may be distrib-
uted in a variety of ways as suggested by the thrust versus time graphs in Figure 2
of Volume I. For steady state continuous operation, the char depth is approximate-
ly proportional to ‘the 0.5 power of run time (X = C'szj Although there appears
to be a great deal of scatter in the data of Figure 8 of Volume I, the design curve
shown correlates very closely the latest experimental data in the 25 to 2000-pound
thrust range.

Three other general classes of duty cycle have been eval-
uated experimentally, with results as follows:

1. Few Restarts with Long "OFf'" Times

Data from Marquardt tests and from Reference 89 in-
dicate that if the thrust chamber liner is allowed to cool completely before being
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refired, the time delay after restarting but before charring resumes just about
balances the post run charring of the previous run. The net result is that the
accumulated char depth is equal to the continuous run char depth.

2. Continuously Pulsed Duty Cycle

Data from tests on 100~pound thrust'ablative cham-
bers with duty cycles having "off" times of less than 10 seconds, resulted in ac~.
cumulated char depths double those for identical thrust chambers with the same
accumulated burn time. The results are presented in Figures 53 and 54,

3. Several Restarts with "Off" Times of 200 Seconds

Data from tests of 25 and 2006-pound thrust chambers
has been obtained on the effect of a duty cycle consisting of "on" times of 13
seconds with "off"itimes of 200 seconds for 20 cycles. In the combustion chamber
of the 2000~pound thrust engine, the effect was an increase in char depth of about
30% because in the 200 seconds "off" time, the chamber surface temperature was re-
duced but most of the heat absorbed was still contained in the chamber walls and
on successive heat pulses, the thtal heat transfer to the walls was greater than
for steady state running. During steady state running the wall temperature rises
to a high velue quickly and stays there, thus reducing the net heat flux over that
for the pulsing mode.

The opposite effect on charring was noted for the
25~-pound thrust chamber locations downstream from the throat and in the chamber
wall adjacent to the injector face (Figure 55). This is attributed to the fact
that for these components, heat can be effectively dissipated by radiation or con-
duction to the surroundings-between pulses.

b. Choice of Ablative Materials

As noted above, a great number of plastic resin systems and
reinforcements have been developed and tested for ligquid motor application. It is
apparent in current development programs that complete optimization has not yet
been achieved in the choice of resin, in reinforcement or in fabrication techniquess
Some of the variables involved in these choices are listed below with comments on
their importance.

(1). Resins and Reinforcements

The; most widely used resin system is the phenolic with
and without filler materials. The standard phenolic resins include:

1. SC 1008 - Monsanto Chemical Co.

2. 91 LD - Cincinnati Testing Lab.
3. BLI~3085 - Bakelite Co.

UNCLASSTFIED - 25 -



MAC AGT3

UNCLASSIFIED

%lquardl or 5961
VAN NUYS, CALIFORNIA m—-

of the following:

¢lude’ the following:

The high-silica reinforcements include cloth and tape

1.
2.

3.

Silica-phenolic laminates using the silica cloth or
tape preimpregnated with standard or modified phenolics and possibly fillers in-

1.

Other ablative laminate systems which appear interesting
and are being evaluated by various agencies include the following:

1.

Refrasil - H. I. Thompson Co.
Sil-Temp - Haveg Industries Inc.

Thermo~-Sil - Aerothermal Industries Inc.

HITCO-1401 P - Refrasil fabric impregnated with
SC 1008 resin. Resin content runs sbout 33% by
weight.

USP 5504 (formerly XAO 34-2) - Refrasil fabric
impregnated with standard phenolic modified by
addition of inorganic fillers (U. S. Polymeric).

USP 5067 - Refrasil fabric impregnated with USP 39
resin (proprietary system of phenolic plus fillers).
Resin content runs 33% by weight with a density of
108 1b/ft3.

Fiberite MX 2600 - Silica-phenolic equivalent to
USP 5504 (MX 2625 system in tape form). Fiberite
Corp. generally uses Sil-Temp reinforcement. Resin
content runs about 29 to 33% by weight.

Zirconia Phenoxy Aldehyde-Aerothermal Ind. This
material is a chemically modified phenolic resin.
Tt may be used with silica or carbon cloth rein-
forcement.

Tests run by Aerothermal Industries with a gaseous
Og/HQ rocket engine chamber showed only a 5% throat
area change for a 300-second run. The chamber pres-
sure was 300 psia and the throat diameter was 0.375
inch. Reinforcement was silica fabric.
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Silicon Carbide Coated Carbon Cloth (Aerothermal
Industries). This reinforcement has a high poten-
tial of erosion resistance for use with any stand-
ard resin system. Development is at present de-
layed due to fabrication difficulties causing em-
brittlement.

Silicone Rubber - Silica Cloth Impregnate (Aero-
thermal Industries - Dow Corning). Silicone Rubber
is a highly cross-linked polymer which is reported
to have excellent high temperature stability and
charring characteristics.

FM 5311 (U. S. Polymeric Co.). This material is a
high silica fabric molding compound formulated from
a phenyl sllane resin plus an additive.

Recent high temperature and high heat flux testing
indicates a substantial improvement in mass loss
rate when tested against standard phenolic systems
with similar reinforcements (USP testse).

X 2001 (Epoxy Novolac-Avco Manufacturing Co.).

X 2001 is an epoxy~phenolic blend with silica fabric
reinforcement plus the addition of inorganic fillers.
Preliminary rocketifiring tests have been made by
Marquardt and other agencies with superior results
in erosion resistance. Char rates and conductivity
have proven to be higher.

MX S-19 (Fiberite Corporation). This is an unfilled
silica phenolic laminate with a L40% higher resin
content than their standard material MX 2646.

Moldable Silicon Carbide (Aerothermal Industries).
This system is formulated from silicon carbide
coated graphite powéer which is mixed with a styrene
phenolic, press molded and then pre-charred leaving
a high density mixture of graphite and silicon car-
bide. It may be used for fabrication of throat and
chamber sections.

Tests performed by Aerothermal Industries with a
gaseous 02/H2 rocket engine showed excellent results,
Reported erosion is 0.013 mils/second for a 300-sec-
ond run with a 0.375 inch throat and P, = 300 psi.

Prechartred Reinforced Plastics Impregnated with
Subliming Salts or Polymers (Chance-Vought).
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For parts of the thrust chamber not in contact with the
combustion gases, still other resins and reinforcements may prove more suitable
from the standpoint of lower density, lowerithermal conductivity, higher strength,
ecase of fabrication or lower cost. These materials include the rubbers and epoxies
as resins and such reinforcements as glass and asbestos.

The use of zirconia fibers for reinforcement has shown
promise in some applications according to vehdors, but due to the brittleness of
the materials and the shortness of the resulting strands of fiber after molding, -
the ability of the zirconia to anchor and reinforce the char is greatly decreased.
Research is continuing on the use of this type of reinforcement.

Carbon cloth has proven less satisfactory than silica
for liquid propellants because no viscous molten film is formed. Also the carbon
rapidly oxidizes with the storable hypergolics as compared to their performance
with solid propellants.

Varioms types of torch and nozzle test programs to
screen a large number of plastic-reinforcement combinations are reported in Ref-

erences 87, 94, 101, 102, and 107.

c. Ablative Thrust Chamber Fabrication Parameters

(1).. Reinforcement Cloth Orientation

Preimpregnated reinforcement cloth orientation may be
made parallel to the chamber centerline by wrapping it on a mandrel to build up
the required wall thickness; or the orientation may be made perpendicular to the
chamber centerline (90° orientation) by stacking and pressing discs of the cloth.
Orientations in between may be achleved by modification of these basic techniques
using tape or conical discs. Fiber orlentations from 15° to 60° to centerline have
been proposed as being optimum. Factors affected by orientation are several and
optimizatien is not straightforward. They include the folfowing:

1. Erosion resistance due to the shingle effect and
fiber anchoring.

2, Reduced thermal conductivity due to higher conduc-
tivity along the direction of fibers rather than
across them.

3. Reduced delamination. Swelling and out-gassing may
cause serious delaminations if a short gas flow
path is not provided.

4, TFabricatlon technique. Angle of orientation affects
the choice of bias tape wrapping versps disc layup.
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(2). Composite Wall Desdgn

The designer must solve many detailed structural prob-
lems relative to attachment, insulatlion, pressure stresses, vibration, acceleration
loads, etc. A typical structure assumed for the weight studies of Volume I is
shown in Figure 56. In this design the thickness of the 45° oriented silica fiber
was taken directly from the char depth plot in Figure 8 of Volume I. The tempera-
ture of the phenolic at the end of running time and maximum heat soak is assumed
to be 800°F. The structural shell designed to take the pressure loads may be
g¢lther-ametal can or an overwrap of resin bonded glass filament or tape. An addi-
tional insulating layer of low conductivity plastic may be incorporated between
the char layer and the structural shell. The insulating layer is designed to drop
the outside temperature from 800°F to 500°F.

A typical phenolic bonded overwrap of 0.15 inch with
alternating layers of longitudinal tape and circumferential filament glass windings
constitutes a structural shell capable of carryling over 500 psia pressure at an
operdating temperature of 500°F. An alternate overwrap technique is the continuous
helically or convolutely wound fiberglass winding designed to carry both the axial
and hoop stresses.

One approach to the determination of proper wall thick-
ness for chambers of reasonable size 1s to construct a test chamber with extra
thick walls to preclude a possible burn out or structural failure. This chamber
can then be run over the most severe duty cycle. When the chamber is cut open the
char depth distribution along the walls from the injector head and throughout the
nozzle expansion sectlon can be used as a guide in contouring the required wall
thitkness. Figure 55 shows ‘hiow the char depth 1s influenced by the presence of a
graphite throat insert and also the effect of sthady state and intermittent duty
cycles. Thermocouples revealed transient temperature distributlions during and -
after the run. Of course, reducing the ablative wall thickness for subsequent test
chamber designs will influence the final temperature response at the char boundary.

In the overall design, it has been found that the con=-
figuration and distribution of materiels give rise to problems of delaminations
during fabrication, curing, firing and postrun socaking. This problem and the prob=-
lems of swelling and differential thermal expansions between dissimilar materials
and the sealing of throat inserts can be solved by careful material selection and
structural design. Material supbllers provide an excellent source of data in this
area. Thils report provides a summary of design data adequate for preliminary de-
sign purposes. Typical data included the following:

1. Temperature response of interior and back face of
ablative walls (Figures 57 and 58)

2. Behavior of materials in a vacuum (Figures 59 and 60)
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3. Reinforced phenolic strength versus temperature
and soak time (Figure 61)

4. Weight of thermally degreded resins versus
temperature (Figure 62)

5. Thermal conductivity of silica=-phenolic
laminates (Figures 63 and 64)

6. Effect of molding pressure on physical
properties (Figure 65)

7. Effect of heat and vacuum on weight and
dimension changes in silica-phenolic laminate
(Table II)

8. Typical physical and thermal properties of
ablative materials (Tables III and IV)

3, Experimental Studies

To investigate the effects of a vacuum environment on the thermal
degradation of laminated refrasil phenolic, a series of laboratory tests were con-
ducted at Marquardt during April 1962. Sample cylinders were cut of this material
to approximate that of ablative chambers to be tested as attitude control motors.
The inner surface of the cylinders were heated by a flat tungsten filament for
periods of 3 to 4 minutes in an evacuated bell jar and they were then soaked in
the vacuum for 2 hours as they cooled to ambient temperature. The results of these
tests, and of identical control samples heated at ambient pressure, are given in
Table II. It appears from these data that the vacuum environment has only a very
small effect on the total outgassing rate of the material. Hoop strength tests
performed on the twice-fired samples after the test runs indicated no difference
in structural integrity. A cross section of the 60° axis samples as shown in Fig-
ure 66 exhibited no difference in char layer depth or strata delamination.

A second effect studied was the swelling of the sample after out-
gassing. There appeared to be no significant difference in behavior between the
vacuum and nonvacuum samples in this effect, however, some insight can be gained
into this problem by considering the manner in which the swelling took place. In
all cases, the material swelled in a direction perpendicular to the lamina and con-
tracted in the parallel direction. This type of dimensional change may be caused
by the warping of the silica fibers.

An investigation into the swelling problem encountered was con-
ducted under another test program. In one such test, a sample of laminated refras-
i1l phenolic material was heated by radiant lamps from ambient temperature to 1000°F
in increments of 100° for 45 minutes. The recorded linear expansions are plotted
in Figure 67. The behavior of the material was linear in expansion to 300°F at
which point outgassing effects caused a sharp increase in the rate of change in
length with temperature. After reaching a maximum length, the expansion assumed
an erratic up and down character due to apparent spasmodic outgassing of individual
layers in the lamina. Popping noises were heard as individual pockets of gas were
liberated.
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Another similar test was conducted by socaking the sample for 1
hour at several significant temperature levels and allowing the sample to cool
before proceeding to the next condition. The results of this test are shown in
Table V.

D. Film and Transpiration Cooling

1. Liquid Film Cooling Analysis

An sttractive means of rocket motor cooling is by use of a liquid
or gas film interposed between the hot working fluld and the container wall. This
process is called film cooling. Since liquid rockets are being considered, the
possibility exists of injecting either of the propellants along the containing wall
in the combustion chamber and in the nozzle itself. When care is taken to assure
that the cooling f£ilm does not penetrate the main gas stream it can act as an effi-
cient heat insulator. The application of film cooling can be divided into that in
which the coolant 1s a ligquid and that in which the coolant is a vapor.

Perhaps the most extensive survey of liquid film cooling in theory
and practice is found in Reference 130. The theoretical developments of Sellers,
Crocco, and Rannie are all discussed. Each essentially takes an ideal case in
which the liquid is flowing smoothly along a flat surface. Mass, momentum, and
energy balances were made for a differential volume of a laminar sublayer of the
maln gas stream, which bullds up on a smooth layer of liquld. Since the entire
container wall is considered to be covered with liquid, the bolling temperature of
the liquid sets the wall temperature.

Crocco assumed a chemical reaction between the coolant and the
main gas stream with the result of heat transfer rates 1.5 times higher than for
the nonreactive case. Sellers and Rannle gave essentially the same results with
Sellers derilvation being easier to use. Sellers equation was the following:

0.1 0.
§%; 37 (Rep) 1.475 (Rep) 1, Prp -~ 1 (12)

where Sty 1s the Stanton number of the bulk gas stream, Re 1s the Reynolds number

of the bulk stream and Prp is the Prandtl number of the mixture. Sellers, by em-

ploying the data from Reference 135 for smooth surface ducts, rearranged his deri-
vation to the following form:

_0.0093
St = 7 555 (13)

with Pry, close to unity, Sty = 0.002.
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Earlier tests at NACA (Reference 124) attempted to correlate
this film cooling phenomena by measuring the film cooling process using hot air
and water flowing in a horizontal smooth tube. Injectipn was made essentially par-
allel to the air flow. Thermecouples were installed to measure the wall tempera=
ture. Figure 68 shows the temperature distribution of the tube. It can be seen
that the cooled length indicated by a wall temperature less than the boiling point
of water does not vary appreciably with circumferential position, and that the walll
temperature rose rapidly once past the podled length. From a heat balance across
the air coolant vapor film an effective heat transfer coefficlent was computed from
the following:

{Jc ZA):
b= T, - Ty) 77OL (14)

where
&c = Coolant flow
AHC = Enthalpy rise of coolant
Tg = Air temperature
T, = Wall temperature, equal to saturation temperature

These calculations are correlated in Figure 69. The dotted line represents the
well known correlation for single phase flow in a tube. The data indicate approx-
imately twice the heat transfer rate for film cooling. For a Reynolds number of
gbout 105, the Stanton number was 0.003 which is 50% greater than the Sellers ex-
perimental correlation. Further experiments on liquid film cooling were reported
in Reference 128 in which a vertical tube containing a f¥ow of hydrogen-oxygen
combustion products was cooled with water. In this, a coolant flow rate was com-
puted based on turbulent flow in a smooth tube. The experimental value of the
coolant flow rate for the coo}ed length considered was twice that of the computed
value. Recently (Reference 126) an experimental study was made to investigate the
effect of different cooling liquids on the film cooling rates. A horilzontal 3 inch
I.D. film cooled chamber was placed between two convectively cooled chambers.
Hydrogen-air combustion gas was used at pressures from 250 to 750 psia and tempera-
tures from 2600°R to 4100°R with a gas stream Reynolds number of about 102. The
liquids employed as film coolants were water, anhydrous ammonia, ethyl alcohol,

and Freon 113. The coolants were introduced tangentially. The film cooled chamber
was instrumented so that the wall temperature could be determined. Figure 7Q is
typical of the data obtained, which shows how the wall temperature varies with
coolant flow rate. Figure 71 shows the linear dependence of the cooled length,
which is defined as the chamber length, which is below the boiling point of the
coolant, on coolant flow. This relationship is consistent with Equation (3).
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Equation (3) also indicates that if the heat transfer coefficients are equal, the
coolant flow rate will be inversely proportional to the enthalpy change of the
coolant, which is the heat of vaporization plus any subcooling present, for the
same cooled length. In general, this is born out by Figure Tl except that the
plots for ethyl alcohol and ammonia are reversed. The authors claim that this
reversal coincides with a theoretical result obtained from a laminar boundary
layer analysis developed by Reference 136. Using Equation (3) the authors of Ref-
-erence 136 computed h and compared it with the h obtained experimentally in the
convectively cooled chamber upstream of the film cooled section. In every case,
the film h was less than that £or the upstream chamber. Also, these results were
compared with the theoretical development of Graham (Reference 137), who modified
the theory of Sellers (Reference 133) with the following equation:

0.8 Prp Re (£/2) -
M= 1% HE%L% =1 £/2 (15)

where f is the friction factor. The authors (Reference 126) state that the experi-
mental data are considerably higher than Equation (4) but do not say by how much.

In addition to this, data obtained from the convectively ..o
cooled chamber downstream of the film cooled unit indicated that a cooling effect
occurred even though no liquid was present. Apparently the cold vapor remained
close to the wall for a distance, blanketing it from the htt gas stream. Investi-
gation of this additional cooling effect was carried out further and reported in
Reference 149. By making an energy balance about an element of vapor (assuming a
nonadiabatic wall) the following equation was derived:

Ty = T, = 2 h 27D L
1ln ZZ - 1n -8 kil S/ = mp—— (16)

Cooling experiments were performed using water and ammonia in a cylindrical com-
bustion chamber. Figure T2 shows a typical data correlation of the test results.
A curve fit through the data gives the following equation:

_ o L £ (W M)
1n7z= —% g/"e (17)
c
where
f (Wg/Wc) = 1+ 0.25 arctan (15 - Wg/wc) (18)
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It must be noted, however, that only a few data points exist and these are con-
siderably scattered.

The examination of film cooling effects was expanded by
Reference 149 to include combined results of both film and regenerative cooling.
In this instance, a liquid was injected just upstream of a cylindrical test sec~
tion which contained passages for the regenerative coolant. Water was used as
the film coolant. An analytical flow model was set up with the assumption of lined
ar.vaporization rate for the film coolant. The integrated equation is as follows:

hf(Tg T)+WCAHv -%E h
; - 1y D LEr - K
In B = g‘:’- - g’Dj- o 77;]3 TCN-W n (1 -%/L) (19
=L (tg-1y) + Ye A L pom e TR
v 7rD L by
where
Ay = Heat flux through wall per unit area
hy = Heat transfer coefficient between gas stream and liquid film
h, = Heat transfer coefficlent between liquid film and wall
Tv = Boiling temperature of ligquid film
Té = TInlet coolant temperature
Z&HV = Heat of vaporization of coolant
L = Length of coolant film
X = Axial distance

The test results are presented in Figure T3, indicating poor
correlation with prediction Hy use of the previous equation. The apparent non-
linear vaporization rate was indicated as the possible reason for poor correlation.
Rather than modify the vaporization rate approximation, the author correlated the
results semiempirically as shown in Figure 74 . The correlating equation shows the
following:

0.1 77 DhwlkL
1n 3 = T g 1n (1 - X/L) = 0.5 (20)

¢
Cc
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Reference 125 reviews some earlier work done on a film cooled
motor that had injection points in the combustion chamber and the convergent sec-
tion of the nozzle. Figure T5 shows a plot of the Stanton numbers obtained for
various injection points. It can be seen that a wide range of values exists from
0.004 up. Figure T6 shows the performance penalty that was obtained by use of
the liquid coolant.

It should be noted that the above work neglected the effect
of thermal radiation from the combustion species to the wall. This will increase
the effective heat transfer coefficient. From thls standpoint it would be desir-
gble to have the coolant opaque to the radiation so it will mbt be transmitted to
the wall.

Another interesting point brought out in Reference 126 was
the low coolant requirement for Freon 113. Inspection of the test item showed a
carbonaceous deposit downstream of the liquid film. This deposit resulting from
decomposition of the Freon 113 added a heat transfer resistance to the system and
reduced the overall heat transfer rate. This phenomena was also reported by Ref-
erence.131 in which an RP-1 lox motor was cooled with the fuel. Analysis of the
data showed an intermittent peaking of the heat flux accompanied by a following
dropoff. The explanation is that the carbon deposit builds up to an unstable
thickness, flakes off, and then builds up again. Reductions in heat flux from a
calculated 6 to 8 Btu/in.g-sec with no deposit to a measured 2 Btu/in.e-sec with
deposits were reported.

One important consideration that must be taken into account
in liqudd film cooling is the hydrodynamics of the liquid as 1t flows along the
wall. The main gas stream as it flows, exerts a shear at the liquid gas interface
tending to set up small disturbances. If conditions are right, the gas can actual-
ly tear off droplets of liquid and remove them from the wall. This liquid which
is removed will not help ¢ool the wall and results in poor efficiency. In addi-
tion, if the velocity and injection angle of the liquid exceeds certain critical
values, the stream will penetrate the gas stream rather than flow along the wall.
Graham and Zucrow Geference 130) have summarized information in this area. In
regard to the problem of liquid penetration into the gas stream considerable work
has been done by Beighley, Knuth, Greenberg, and Lauden (References 138 through
141, respectively) at Purdue University. Numerous physlcal parameters were varied
in experimental work to determine the critical injection velocity at which liquid
flow separation from the wall is wisually observed. The parameters varied were
liquid density, viscosity, surface tension, gas Reynolds number, injection angle,
injection geometry, and hydraulic diameter. The area of application was Investi-
gated also, such as the combustion chamber, the junction between the combustion
chamber and the nozzle, the divergent and convergent nozzle sections. Based on
numerous data points the critical velocity was nearly independent of liquid sur-
face tension and viscosity and slot depth. The final correlation showed for right
angle injection that:
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(0.404 - 1.2 x 107 Rey) -0.65
FE @ T L e pey (21)
for

0.5 x 107 < Rey, < 2.5 x 107

and
(0.0 - 1.2 x 107 Re,)
v+ YAL (b b
— = (= = 0.08 22
=15 @ 5 (22)
for 2.5 x 107 < Rey < 12 x 107
where
b = Slot width
D = Diameter of chamber
V+ = Critical velocity
U, = Gas stream velocity

Further work in this area was done by Knuth (Reference 142) in a circular duct in
which the coolant was injected through radial holes. Liquid properties were again
widely varied and the data were correlated by the following equation:

2
%;%z%¥jg = T.65 x lO-5 Rey, 0.1 (Re+ Ca—f)o'595 (23)
where
cat = Fp (V+)2/(By - Py)
Pb = Static pressure of gas stream
Pv = Partial pressure of coolant vapors in gas stream
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In summary then, the above work shows how, if the injection
velocity is kept below the critical velocity, the liquid flow will not penetrate
the gas stream. .

A number of investigators have studied the stability of the
film as 1t flows along the wall. Graham and Zucrow (Reference 130) give a summary
of the work done up to 1957. By using different types of injectors it was con-
cluded that the method of injection had no influence on the stability of the film
so long as the critical injection velocity was not exceeded. Also, it was observed
that the liquid flow goes through three regimes. In the first, the surface of the
liquid appeared to be smooth for low flow rates. As the flow was increased the
second regime was encountered in which waves began to form on the liquid surface.
These waves became greater in amplitude and frequency as the flow was increased.

As the liquid flow rate was increased still further, the waves continued to in-
crease in number and amplitude but at a much slower rate than the second regime.

It was noted that surface tension had only a minor effect in changing the transi=-
tion regime. Viscosity had a strong influence in maintaining stability. Increased
gas mass velocity tended to reduce the amplitude but increase the frequency of the
waves. Gas stream temperature had little effect.

In order to develop some quantitative method for film stabil-
ity comparison, a semiempirical method was used by Graham and Zucrow hy employing
the data of Reference 143. A stability effectiveness factor ES was defined as
follows:

ﬁ ideal
E, = —xoo (2k)
Wc actual

Another method of viewing this would be to consider this factor as a correction
the heat transfer coefficient as expressed in Equation (14) such that,

h ideal (25)

B = h actual

where h ideal would be that coefficient derived from flow along a smooth surface.
By using the data of Reference 143 a functional relationship between Eg and Wq+,

which is defined as the dimensionless coolant flow equal to WC/TVD//4L , was devel-
oped and is shown in Figure T7T.
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By staying below a W,+ value of 300, the effectiveness should
remain unity. Therefore, if the film cooled length is plotted against coolant flow
rate a straight line will result as shown in Figure 71. However, if the critical
value of Wo+ is exceeded, droplet breakaway will occur and a knee will appear in
the plot as shown in Figure 78. It must be kept in mind that this work was done
in a smooth tube. Adverse pressure gradients in the nozzle section may greatly
affect the stability.

One additional factor to be considered in liquid film cooling
is the even distribution of liquid in the direction of gas flow. The evenness of
distribution depends principally on the main propellant injector, film coolant in-
jector system and conditions of the chamber surface. A poor distribution will re-
quire higher coolant flows in order to eliminate hot spots.

The process of vapor film cooling is similar to that of the
liquid type except that the film and wall temperature vary as the coolant flows
along the wall. However, the idea of interposing a colder fluid between the hot
gas and the wall still exists. Reference 123 presents a useful mecdel supported by
experimental data which describes the process and provides an insight into the im-
portant parameters. By assuming that the coolant forms in a discrete layer with a
low temperature profile in the flow direction and also normal to the wall and with
no conduction along the wall a relationship was derived by making a heat balance
on the film. This was the following:

W, c, = hD7TL (26)
- 1lnn
where
h = Heat transfer coefficient of a smooth tube
D = Tube diameter
L = Cooled length
n = Temperature approach = T ad wall - T wall

T ad wall - T coolant

An experimental test program at NASA (Reference 123) obtained data for air and
helium as coolant for a hot gas stream. The coolants were admitted by tangential
slots. Temperatures, velocities, and slot heights were all varied for an 8-inch
square duct. This data along with that of Reference 1lhk were correlated to the
theoretical derivation Equation (26). Figure 79 shows a typical correlation. The
final equation was as follows:
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W,C . =hnflDL (27)

where
S = ©Slot height
o c = Thermal diffusivity of the coolant
Vé = Velocity of the main gas
Vg = Velocity of the coolant
and _
\'2 V' v S
£ (-8) = 1+ 0.4 arcten (_& - 1) vhen £ = 1.0
Ve Ve Ve
and
- 1.5 (V%8 - 1) Ve <
£ (=B) = B when =8 S 1.0
¢ v Ve
c [¢] (]

Followeon work was reported in Reference 129 in which angled slots and normal holes
were used as a means of injection. Essentially a series of experiments were run
to obtain a correction factor for nontangential injection. The final equation
showed the following:

W, C., = h7YDL L (28)
p -Inn + 1n cos 0.8 i eff , , ol
v 0-125 v o
(Co : () {
' o(c Vc .
Where ieff 1s the effective coolant injection angle = tan_l ( sin 1 )
(€V)g

é@éiw

with i, the injection angle.
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2. Recommended Design Calculations

a. Liguid Film

The mechanism of liquid film cooling has been well documented
as evidenced from the discussion above. A number of experimenters have Anvesti~
gated the area of flow in & cylinder while little work has been done in the nozzle.
Even in the work done on cylindrical flow the various investigators do not agree.
The main dispute is the effective heat transfer coefficient. Reference 125 recom-
mends a Stanton number of 0.002, Reference 124 shows coefficients twice as high
as for a smooth tube. Reference 126 shows coefficients less than experimental coe
efficients taken upstream of the injection points. However, in this last case a
number of runs were made with different coolants. On this basis it is recommended
that the coefficient be taken for a smooth tube and that Equation (3) of Appendix
C, as follows:

1/2

* Cp, (Ty - T,) 776y Po )

= 2 8t, (Cr)5/2 AfHc T

ala

be used for design of the combustion chamber provided that the critical inJjection
velocity as defined by Equations (21), (22), or (23) is not exceeded. Also, one
should not stray far from the maximum dimensionless film coolant flow W+ as shown
in Figure

Data for liquid film cooling in the nozzlesection is meager.
The data from Reference 125 ds plotted in Figure T5 shows a wide variation for
Stanton numbers in the convergent section. Reference 145 reports film cooling re=-
quirements for ammonia of 19% of the total propellarmt flow and for water of 16%
for completely cooling a convergent-divergent nozzle. No further detailed informa-
tion was obtained except a high performance loss. The effect on film stability of
adverse pressure gradients is not known. However, until further experimental data
is forthcoming it is recommended that Equation (4) of Appendix C which is as
follows:

. l 2
dvic 2 St Opy (Tg - Ty) (7ch P /

= T dL

We (ajax) /2 D,

be applied by using the Stanton number for smooth flow. The equation will need to
be integrated over the section of interest. If the contour of the nozzle can be
approximated by a series of conical sectlons, the equation can be integrated analy-
tically. Otherwise, a step by step approach is required. It should be mentioned
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‘that the above equations represent a conservative approach since the additional
cooling ability of the cold vapor downstream from the point where the last drop
of liquid existed was not considered. Only a limited amount of data and a ques-
tionable correlation (Equations (17) and (18)) are available at present. As fur-
ther information becomes available, it may be possible to include this additional
cooling effect. If one were to consider a coolant such as hydrogen which has a
low heat of waporization and a high vapor specific heat, the vapor cooling effect
might be quite large.

b. Gas Film

The performance of gas film cooling has been well established
by experiment, Reference 123. Data have to be correlated by assuming the heat
transfer coefficient for a smooth tube. Therefore, for the combustion chamber de-
sign, it is recommended that Equation (6) of Appendix C, as follows:

. 1/2
.;2 2 St  L¥ ( ' Cp Py ) &g 1
g (Cr) 3/2 T Cpc - 61?2151 + 0.04
S8 T e (8
A Ve

be used with the Stanton number as that corresponding to smooth pipe flow. With
regard to the nozzle section, no data seems to be available. Therefore, it was
best to extrapolate the cylindrical tube data and use the following Equation (7)
from Appendix C:

afie 2" st TfCF Py
— =
Wg (a/%) 1/2 T

with the Stanton number of a smooth pipe flow. This equation, of course, would
have to be integrated from one end of the nozzle to the other.

5. Parameterization of Film Cooling Requirements

In order to understand the important factors to consider when
contemplating the use of film cooling, a parametric study was made for some typical
propellant combinations., A base condition with a thrust requirement of 4000 pounds,
and a chamber pressure of 150 psia was selected. Also a contraction ratio of 1.5
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and a characteristic length of 30 inches was chosen. The motor was arbitrarily
divided into four cylindrical or conical sections to make the calculations easier.
These four sections were the combustion chamber, the convergent section, and the
divergent section from an area ratio of 1:1 to 10:1, and the divergent section
from an area ratio of 10:1 to 40:1.

Four propellant systems, NpOy/NpHy, N20)/NoHL-UDMH, Fo/Hp, and
OFg/BgH6 were selected for comparison. Ideal assumptions were made such as uniform
coolant flow distribution and thermal stability of the coolant. Also an adiabatic
wall was assumed. Using the design procedures previously outlined, cooling re-
quirements were calculated for the various sections of the motor and are listed in
Tgble I. Tt can be seen that in each case the combustion chamber requires the
most coolant. This is obvious since the small contraction ratio (1:5) gives high
heat transfer coefficients and the length is of sufficient value to give reason-
able heat transfer surface area. Although the convergent gection has the highest
heat transfer coefficient,-the surface area is much smaller than any of the other
sections. Thus the convergent part has the smallest coolant requirement. In com-
paring liquid film cooling, in which no advantage was assumed from the cold vapor
downstream of the last drop of liquid, the main difference between the cooling re-
quirements of the various propellant combinations is the heat flux and the heat of
vaporization of the coolant. For these cases, the heat of vaporization is the con-
trolling factor and thus the NgOu/NgHu system has the lowest requirements.

For gas film cooling, the most important property is the specific
heat of the coolant. Note that gaseous hydrogen has by far the lowest requirement
for a gas. Liquid film cooling for hydrogen under the ground rules established
looks less attractive because of its low heat of vaporization and low boiling
polint.

: In estimating the liquid film requirements it is necessary to
assure that a stable liquid film is established. By use of the stability criteria
calculations were made to determine the maximum coolant flow at any one section in
the motor. By knowing this along with the flow rate of coolant required, the mini-
mum number of injection points may be determined. Figure 82 shows the injection
scheme assumed. The OFE/B2H6 system is not shown since it is similar to that for

Hy/Fp.

Since there is no stability criteria for gas cooling, the injec-
tion was assumed to occur at the beginning of each section. The velocity of injec-
tion was arbitrarily assumed. Figure 83 shows typical injection conditions.

These assumptions were by no means optimum and by proper variation of the number
of injection points and the injection velocities it is possible to partly reduce
the coolant reguirement. '
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For the parametric studies made of film cooling in the nozzle,
geometric similarity was assumed. In other words, the length of the nozzle was
taken to be proportional to the throat diameter. Figure 84 shows the results of
the parametric study. It is indicated that coolant requirements are independent
of thrust for constant pressure. By increasing the thrust the throat area is in-
creased proportionally. Hence, the throat diameter and the length are each in-
creased by the square root, meaning the surface area is d8ubled. The heat trans-
fer is held constant and so the heat duty is increased proportionally. Since the
propellant requirement is increased proportionally, the coolant flow ratio is a
constant.

By holding the thrust constant and increasing the pressure, the
coolant requirement is reduced somewhat for the following reasoms. Increasing the
pressure causes the throat area to reduce proportionally. This gives a proportion-
al reduction in surface area. Since the heat transfer coefficient is usually
assumed to Vary as P to the 0.8 power, a slight reduction in coolant requirement
is the result.

The system, OF /B ~Hg, was examined in detail because of its spec=-
ial property of creating a very hlgh heat flux at the nozzle throat. Although
film cooling of the chamber does not appear attractive because of the large cool-
ant flow required (see Table VI), it may be advantageous to use it locally such as
at the throat, where the high heat flux creates problems with regenerative cooling.
Figure 47 of Vélume I, shows the accumulated liquid coolant requirement beginning
at the chamber exit and ending at the nozzle exit. Figure 47 of Volume I includes
requirements for gas cooling with a maximum wall temperature of 2200°R. From the
latest Purdue data, the coolant requirements for liquid film including the vapor
cooling effect is shown in Figure 47 of Volume I. By comparing this data with
that of gas film cooling, the vapor cooling effect appears to be much greater. It
is difficult to explain the large difference between the two. Probably the true
coolant requirement for ligquid cooling with the vapor cooling effect lies somewherse
in between. The need for experimental verification in this case is obvious.

One further study with the OF /B H system was made by varying
the maximum wall temperature for adiabatic congitlons for the convergent section.
The result is plotted in Filgure 85. Two effects are evident by the drop in cool-
ant requirement with the increase in wall temperature. The rise in temperature
reduces the heat flux and increases the heat content of the coolant since the maxi-
mum coolant temperature is taken to match the wall temperature. By coupling an
additional cooling mechanism, such as radiation or regeneration, the coolant re-
quirements will drop since the coolant temperature will be able to rise above the
wall temperature.

4. Limitations of Film Cooling

Although film cooling does appear advantageous as a method of
cooling since there are no apparent heat flux limitations as found with regenera=-
tive cooling or time limitations as with ablative cooling, Br pressure limitations
such as with radiation cooling, there is one important consideration that must be
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evaluated. This is the amount of coolant that is required. From this point any
flux and any total heat requirement can be met provided one is willing to pay the
penalty resulting from the coolant flow rate and the temperature stratification.
Ordinarily the fuel is used as the coolant in order to minimize the possibility
of burning on the wall. Using the oxidizer introduces the possibility of burning
at the surface. TInert coolants have been considered, but usually they produce a
larger performance decrement (see Figure 76).

From a qualitative view, the effect of transient operation of
film cooling does present some problems. If it is necessary to establish the
film before ignition, hard start may result from a fuel rich mixture in the com-
bustion chamber (Reference 125). Also a finite time may be required to establish
the flow. For a pulse type operation a large expenditure of fuel may result.
Starting the engine before the flow of coolant will result in a deposit of conden-
sible combustion products on the wall, which will plug the coolant injector pas-
sages (Reference 125). To prevent this a small bleed of coolant could be allowed
while starting the engine. To properly evaluate the restart problems it would be
necessary to consider each particular coolant and its stability characteristics.
Further search in the reference literature may reveal more pertinent information
as to the starting and pulsing characteristics of film cooling.

The application of film cooling to a wide range of engine size
presents no problem. The larger the engine, of course, the greater becomes the
flow requirement since it is proportional to the total heat that would be trans-
ferred to the engine wall by the gas stream. Since this total heat is proportion-
al to the surface area, it is proportional to the coolant film. Problems may be
encountered in the application to very small motors when considered at the throat.
The boundary layer buildup at the throat compared with A¥ may seriously effect
the Isp'

With regard to the process of film cooling under throttling con-
ditions, Equation (3) of Appendix C indica?es that the ratio of coolant flow to
propellant flow is proportional to (PO/T)l 2, If under throttling conditions this
ratio does not vary too much, the flow ratio should be essentially constant.
Therefore, the coolant flow rate would be expected to throttle in proportion to
the flow of fuel (assuming the fuel is the coolant). However, a change of O/F
ratio would destroy the linear relationship to the propellant flow.  Further 1lit-
erature search supported by experimental backup would bring to light the control
problems of this process.

There is no limit to the duration of operation for film cooling
since there will always be coolant available as long as there is propellant.

There are no storage problems involved with the coolant unless
an inert coolant is selected which would require separate tankage and thus more
weight.
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© £ilm. A high g field exerted parallel to the axis of the motor would tend to

_in turn would have an effect on the heat transfer rates, liquid film stability,

“ing fluid of the rocket motor. However, there are some important differences.

"thewall. From a theoretical standpoint gaseous transpiration cooling should be

The operation. of film cooling in a high g field apparently has
not been determined to date. One might expect a larger effect with the liqudd

thicken or thin the boundary layer of the liquid depending on the direction. This

and thus the coolant requirements. The g effect would be expected to have a less~-
er effect on gas cooling because of lighter density involved. It is interesting
to note that the work of Reference 124 was performed with a water'film coolant
flowing in a horizontal tube without a large coolant flow length distribution
(Figure 68). This indicates that a one g field normal to the surface is not det-
rimental. Theoretically, the high g condition could be analyzed for ideal condi-
tions to indicate the approximate influence.

5. Transpiration Cooling

The process of transpiration cooling is similar to film cooling
in that the sensible or latent heat of the coolant absorbs the heat from the work~

Unlike the film cooling principle, in which a cold film interposes itself between
the hot gas stream and the structural wall and is injected through slots or holes,
transpiration cooling utilizes a porous wall so that the coolant is in contact .~
with a large surface area of the wall. In this manner, the coolant actually ex-
changes heat with the wall by means of the large surface area available so that
the coolant, as it issues into the hot working fluild approaches the inner wall
temperature. As this fluid enters the chamber or nozzle where it is being used,
the momentum of the hot gas stream sweeps it along the wall. Therefore, an addi-
tional advantage is taken in that the coolant, at the temperature of the inner
wall, essentially thickens the boundary layer and reduces the net heat flux fo

equivalent to gaseous film cooling. However, the transpiration coolant reaches
the maximum wall temperature before it comes in contact with the main gas stream,
while the film coolant is in contact with the main gas stream as it reaches this
temperature. Cooling efficiency is guite low.in the latter case since some of the
film will be torn away from the wall. As evidenced by sample calculations cooling
is only about 20% efficient. Transpiration cooling can have an added advantage
over liquid film cooling in that in theory the liquid can be thought to vaporize
as it diffuses through the wall. In this manner the coolant can absorb more than
the latent heat and thus reduce the amount of required coolant.

Reference 136 considered an ideal case of Couette flow with mass
injection and by heat, mass and momentum balances derived an equation for the heat
transfer coefficient between the main stream and the wall as a function of the co-
efficient without mass injection. The result was as follows:

Gg “Pe
Sty Gg C
h o g ~Pg
hO - (29)

Te TD,

e
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where
h = Heat transfer coefficient with transpiration
hO = Heat transfer coefficient without transpiration
St, = Stanton number
Gg = Main bulk mass velocity
G, = Coolant mass velocity

The above expression then, shows the effect of reduction in heat transfer by
transpiration cooling.

Experiments have shown this derivation to be representative.
Reference 146 considered a 7 by 1.5 inch porous flat plate constructed of sintered
stainless steel wire 0.050 inch thick which would have sufficient pressure drop to
produce uniform flow distribution. The roughness of the surface was apparent to
the touch. The results shown in Figure 80 indicate good correlation with the
film theory. Further work on transpiration cooling was reported in Reference 147
and essentially verify the results of Reference 146. Typical results are shown
in Figure 81.

6. Transpiration Cooling Design Calculations

The theoretical derivation of transpiration cooling of a flat
plate has been well documented by experiment (References 146 and 147). Therefore,
one can have confidence in applying the results for a gaseous coolant. The use
of liguids which vaporize as they diffuse through the wall has not been verified.
As an ideal condition it may be postulated that this process is identical to the
gaseous one except for the term which includes the enthalpy change of the coolant.
This number should represent the change of temperature from that of the subcooled
injected liquid to that of the wall temperature. Consequently, the combustion
chamber cooling requirements can be determined by Equation (10) of Appendix C,
whigh is as follows:

b

0.57 G

-1/2M —c
L* Cp, (Ty - T.) /77 Cp P ( S >
= 2 Sty ~ £ 8 W ,]_FO e N g o/

- (cr)>/? Ao

=

A question arises as to the application of this approach in the curved surfaces

of thei nozzle. Reference 127 considered the cooling effect downstream from a
transpiration cooled section of the convergent area. The authors stated that the
pressure gradient caused the departure of the results from the film theory and
correlated the results for air and helium empirically. The question is still open
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as to the applicability of these results to a more general case. Pending further
experimental information in this area, it is recommended that the flat plate re-
sults be applied to the nozzle in the same manner as was done in the case of film
cooling. Equation (11) in Appendix C shows the following:

. 1/2 G
an 2 St Cpgy (Tg - T..) Cp P - 1/2 W01 < -
~¢ _ T % "Pglte ” v 77/;’ 0 7Y -a, st )b

Vg (a2 A, e

which must be integrated over the areas to be cooled.

It is also recommended that in lieu of experimental data, the
above equations be used for the liquid that is assumed to vaporize as it flows
through the wall.

T. Limits to Transpiration Cooling

Theoretically, the requirements of transpiration cooling are less
than those of film cooling. In general, the limitations are the same as for film
cooling with the exception of a few additional ones.

There is no maximum heat flux which limits the use of transpira-
tion cooling. The heat can be removed provided the coolant flow rate is available,
The maximum pressure limitation would only be a function of the strength of the
porous media through which the coolant diffuses. The loss in performance is $imi-
lar to that of film cooling.

Perhaps the biggest problem involved in transpiration cooling is
the selection and manufacture of the porous media. One prime requirement is that
of uniformity. This is necessary to obtain uniform flow distribution; also suffi-
cient pressure drop must be available to insure this mniformity. Ordinarily these
materials are made of sintered metal, woven wire, perforated sheet, and fiber base
porous materials. Reference 148 presents a limited discussion of materials and
their problems. The author did indicate the importance of having a clean coolant
which contains no foreign matter that will clog the pores. Also indicated was the
lack of a deposition problem on the hot gas side because the Ttowing coolant will
tend to prohibit any scale formation. Reference 149 considered the use of refrac-
tory metals as the most reasonable choices for fabrication of the porpus media.

A statement was made that fabrication of rocket nozzles with these materials would
require a major development effort. In addition, the use of refractory metals in-
troduces the problem of oxidation susceptability. In any event indications are
that the materials problem must be solved before wide spread use can be made of
transpiration cooling. Good heat transfer data obtained from a small test section
leads one to believe that this can be accomplished.
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The use of transpiration cooling may bring in a problem in the
convergent or divergent section where a pressure gradient exists in the direction
of the main gas flow. In order to obtain proper coolant distribution it may be"
necessary to taper the thickness of the porous media.

The use of transpiration cooling, aside from previously mentioned
points depends strongly on the nature of the coolant. If it is a gas, it must be
stable up to the operational temperature of the wall. If it decomposes somewhere
along the way with formation of particles, plugging of the porous media will
surely occur. The physical state of the coolant must also be considered. Refer-
ence 148 states that if a liquid coolant boils within the porous wall, coolant
flow instability will occur. Reference 149 refers to an experiment in two-phase
transpiration cooling in which a double wall section each l/8-inch thick, of sin-
tered stainless steel was used, with a thermocouple placed between the walls. The
hot gas temperature was in excess of 2000°F and water was used to cool the sec-
tion. Measurements made between the walls indicated that boiling occurred in the
wall nearest the hot gas. Neither flow instabilities nor damage to the porous
wall occurred. Until further experimental data is available on two-phase cooling
the final conclusion on the matter must be reserved.

During transient operation some problems may occur. In order to
prevent plugging of the pores, it is necessary to start the coolant flow first.
This will require some throttling control since the back pressure has not been
set by the working fluid. As combustion begins the throttling will need to be
eased as the back pressure is built up. As in film cooling, the problem of hard
starting in the combustion chamber may result from a fuel rich mixture (assuming
the fuel is the coolant). If the coolant is a liquid, instability problems may
result from a transient heat flux. Further analysis into these areas may indi-
cate the magnitude of these problems.

In a similar manner to film cooling, a pulse operation may cause
a large expenditure of propellant due to the requirement of flowing the coolant
first. Development work along this line may establish a realistic quantitative
penalty to the pulse type operation.

A throttling operation should not present a special problem since
with small changes in thrust the coolant to propellant flow ratio is proportional

to (PO/T)l/g. However, changing the O/F ratio does indicate the need for control.

Engine size does not present any problems to the application of
transpiration cooling. Naturally, the larger the surface area of the engine, the
larger will be the coolant flow requirements and the larger the decrement in Isp'

There is no limit to the duration of operation of transpiration
cooling since there will always be coolant available as long as there is propel-
lant.

No storage problems will be encountered unless an inert coolant
is selected which would require separate tankage.
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The process of transpiration cooling has not been evaluated
under high g fields. It would be expected that if the field is directed along
the axis of the engine its major effect will be to thicken or thin the boundary
on the wall depending on direction. Since the cooling procees experimentally has
agreed with the boundary layer assumptions, it seems reasonable that the effect of
high g fields could be evaluated analytically and the increase or decrease in heat
transfer rates indicated.

A vacuum environment should not pose a problem except for the
startup case using a liquid coolant. The liquid will continue to flash at the
surface or inside the porous media until the back pressure from the motor is

brought in.

External environment effects outside the motor casing, of course,
have no influence on the performance of transpiration cooling.

8. Parameterization of Transpiration Cooling

It has been shown that transpiration cooling is more efficient
than film cooling because the coolant is protected from the shearing action of
the main gas stream until it diffuses through the wall. Ineffeciencies occur in
film cooling by the tearing from the wall cold portions of the film. From the
sample calculations performed on the 4000-pound thrust engine, the advantages of
transpiration cooling become evident. In comparing the results of an Ngoh/NgHu
system with that of Hg/Fg, the advantage of the available enthalpy of the coolant
becomes evident. However, the relationship is not linear as in the case of the
film cooling calculations, since a higher coolant flow reduces the heat transfer
coefficient and thus requires less coolant. Nevertheless, the same general trend
of coolant requirements exists with transpiration cooling as shown by the similar-
ity of the design equationms.

Parameterization of the conditions would result in trends similar
to that of film cooling. Effects of various factors will be somewhat different
due to the influence of coolant flow ratio upon heat transfer coefficient.

E. Heat Sink Cooling

Combustion chamber and exit nozzle component temperatures may be held
below structural limits while heat is being conducted away from the surface and
absorbed in the chamber and nozzle walls. Heat sink components that are essentiali
ly inert, absorb heat as a function of the specific heat, mass, and temperature
rise of the part. Heat sink capacity may be increased through the use of endo-
thermoic heat sink materials. These materials such as subliming salts, lithium
compounds and low melting point metals capable of absorbing large amounts of heat
through a phase change from an initial solid state. The endothermic materials
may be impregnated into porous refractory wall materials or used to back up the
walls as an insulator as well as a heat sink.
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The primary limitation on this concept is the run time available be~-
fore a limiting surface temperature is reached. Two limiting temperatures are
encountered: First, the melting, subliming or softening temperature at which the
structural material would flow or erode rapidly. Second, the temperature at which
the oxidation rate or reaction rate with the combustion gases would be excessive.

1. TInert Heat Sinks

Promising heat sink materials are those which have high heat cap-
acity, high thermal conductivity, high structural temperature limits and compati-
bility with combustion gases. Figure 86 presents a plot of the surface tempera-
ture rise of a semi-infinite slab which is heated cemvectively at the surface. An
examination of the parameter h?\)o(e/k indicates that the initial heat sink sur-
face temperature rise rate is proportional to the heat transfer coefficient and
inversely proportional to the sguare root of the term k Cp(> (i.e., thermal con=-
ductivity and heat capacity per unit volume). Furthermore, the time for differ-
ent materials to reach a given temperature under the same heating conditions is
proportional to the product k C;)Q . Hence, an approximate figure of merit for
heat sink materials would be k Cp& . The exact solutions for the temperature re-
sponse of cylindrical sections of finite wall thicknesses follow these relation-
ships initially but the temperatures at later times become a function of radius
ratio and wall thickness. These solutions have been worked out in a convenient
graphical form in References 208 and 209. Since these reports are readily avail-
able, the solutions are not included here.

Values of k Cp 6 for several materials are listed in Table VII
as a comparison of heat sink potential. A further comparison of heat sink poten-
tial may be based on time required to reach a limiting temperature since these
limits vary considerably for such materials as copper and tungsten. Table VII
lists a reasonable temperature rise and the last column gives the time for a slab
surface to reach this temperature for a heat transfer coefficient (h) of 500 and
a gas temperature of 5000°F.

On this latter basis, edge oriented pyrolytic graphite washers
represent the best heat sink material followed by tungsten and graphite. These
materials also have the best thermal shock resistance. Oxidation is the critical
problem with combustion gases containing COp and HpO. Graphite and tungsten oxide-
tion resistant coating offers a partial solution for temperatures below 4LO00°F.
In products containing primarily HF, the heat sink temperature limits may be in
the 4000° to 6000°F range.

Typical run times to reach these high surface temperatures are
shown in Figures 11 and 12 of Volume I for a nozzle throat insert (or chamber)
with a Lteinch I.D. and an 8-inch 0.D. with properties corresponding to graphite
and pyrolytic graphite at chamber pressures up to 600 psia and gas temperatures
to 2000°F.
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The effect of a transient pulsing duty cycle on the temperature
response of a graphite throat insert hot and cold sides is shown in Figures 87
and 88 . The thermal analyzer IBM TO4 computer program was used to compare the
difference between a 50% or 14% duty cycle with the approximation that the heat
transfer coefficient could be assumed as 50% or lh% of the steady state value.

The combustion environment was as follows:

a. Throat insert size 0.85 inch I.D. and 2.75 inch O.D.

b. Propellants NpOL/0.5 NpHy - 0.5 UDMH

c. Chamber pressure P, = 100 psia

d. Combustion temperature = 4500 °F

e. Convective heat transfer coefficient h = 310 Btu/hr £t2 °F

Duty Cycles:

a. 50% - 200 milli sec. on and 200 ms off

b. 14% - 200 ms on and 200 ms off followed by 10 sec off

Figure 87 compares in detail the transient temperature response
for the 14% duty cycle with the 14% heating rate approximatign,

The discussion of semi~infinite slabs indicates that a limiting
surface temperdture may be reached in a short time regardless of how thick the
chamber walls are. Therefore, the first step in evaluating the feasibility of a
heat sink component would be to calculate the run time available with infinitely
thick walls. Then a calculation of chamber component weight versus run time may
be made using the graphs available in References 208 and 209.

2. Endothermic Heat Sinks

Preliminary evaluation of endothermic heat sink materials may
be made on the basis of the weight of material required to absorb all of the heat
flux to a nozzle component at a specified wall temperature. Consider the follow-
ing example which is worked out in round numbers to demonstrate the concept in-
volved.

UNCLASSIFIED. - 51 -



MAC AGT3

m’?ﬂﬁ.’i’ 5981

UNCLASSIFIED van v, CRITGRA O

Example:
Thrust F = L4000 1b
ISp = k40O sec
Flame temperature T, = ‘TO00°F
Surface temperature T, = LO0O°F

1000 Btu/hr ft2 °F

Heat transfer coefficient h

Throat Diameter D¥ = 2.5 inches
Surface area cooled Ag = ,50‘inches2
Propellant flow Wy = .10 1b/sec
Heat flux = 173.5 Btu/sec (30 in.2)

1000 Btu/1b

Heat absorbed by sink material
in phase change AH

Coolant utilization rate = 0.17 1b/sec

Fraction of propellant rate 0.017 or 1.7%

Weight for 100-second run = 17 1b

Some potential endothermic heat sink materials which sublime be=-
tween room temperature and LOOO°F are given in Table VIII. The temperatures of
sublimation or dissociation for these materials vary from 800 to 6700. Btu per
pound. Other potential endothermic materials would be metals which boil below
LOOO°F such as lithium, magnesiupm,and zinc, or materials which have a high heat
of fusion such as lithium hydride (1065 Btu/1b).

The practical problems of controlling the nozzle component tem-
perature and the utilization rate of the coolant are subjects of current research
(References 205, 206 and 209). Results of uncotled nozzle tests (at NOTS, China
Lake) with porous tungsten impregnated with copper and with brass as well as
other heat sink materials are reported in Reference 205. Design studies on simi-
lar advanced cooling concepts for solid propellant application are reported in
Reference 210.
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IV. DESIGN DATA REFERENCE SECTION

A. Mission Requirements

The first part of the problem of determining the applicability of the
various combustion chamber cooling methods to liquid propellant rocket engines used
for space missions is to define the desired missions and the required rocket engine
characteristics.,

The following categories of space missions and maneuvers are con=-
sidered representative of the various space activities which are currently under-
taken or will be initiated in the foreseeable future:

1l. Orbital corrections
2. Orbital rendezvous

3. Correction of injection errors, station keeping, and attitude
control of a 2h-hour satellite

4. Lunar and interplanetary trajectory corrections
5. Lunar and planetary orbiting maneuvers
6. ZILunar and planetary landings and takeoffs

The basic study to determine the propulsion requirements and systems
for these space missions was made by Aerojet-General under Contract NAS 5-915
(Reference 1)and by Rocketdyne (Reference 2). Other references were used to tailor
the basic study toward establishing combustion chamber operating requirements.

Representative system characteristics in Table I of Volume I for the
mission/system classifications were developed by considering a specific payload
and vehicle size. The injected spacecraft weights were compatible with the capa-
bilities of the Centaur, Saturn, and Nova Launch vehicles (References 2, 3, and 4).
Most parameters are presented on the basis of per-unit initial mass,’in order to
allow direct scaling of the results with vehicle gross weight. The analyses of
orbital maneuvers were generally based on impulsive thrusting assumptions. The
characteristics evaluated as basic mission-related propulsion requirements were as
follows:

I. Ideal velocity increment requirements
2. Desirable initial thrust-to-mass ratios
3. Required total impulse accuracy

4. Required thrust variability
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The

Re-start requirements

Minimum service life requirements
Thrust programming

Storability requirements

ideal velocity requirements were established directly from the

nature and characteristics of the maneuver, whereas the required total impulse
accuracy is normally determined by the accuracy with which the maneuver must be
completed. The desirable initial thrust-to-mass ratios were established from the

following:

6.

The

minimum service life, thrust programming, and storability were established directly

Maximum acceleration tolerance of payload
Required cutoff impulse accuracy
Increase of propulsion system weight with thrust

Variations in AV requirement with thrust level (such as those
due to gravity and drag losses)

Effects of maneuver duration on guidance complexity (as for
orbital maneuvers)

Effects of accelerometer bias errors on monitoring accuracy
for the maneuver

requirements for thrust variability, re-start requirements,

from the characteristics of the maneuvers.

The

propulsion requirements for the representative systems fall into

propulsion capability groups which are as follows:

1.

2.

Systems in low thrust range capable of multiple re-starts and
thrust variability

Systems with a nominal constant thrust of 2000 to 20,000 lbs
capable of multiple re-starts and using thrust vector control

Systems with constant thrust on the order of 1 by lO6 lby with
multiple re-start capability.
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The various space missions considered and the associated propulsion
system requirements were summarized in Table IX (Table I, Volume I). A review of
this table reveals the wide range of system parameters under consideration. Thrust
requirements vary almost continuously from one pound to over one million pounds,
the number of restarts vary from none to hundreds, the burning times vary from less
than one minute to several minutes. Studies are continuing to evaluate further de-
tailed operating requirements for the various missions, such as thrust transients
and lunar landing thrust programming techniques.

Further detailed considerations of the space mission maneuvers and
how they affect the propulsion requirements are as follows:

1. Thrust-Time Requirements

Four different types of thrust-time plots for space engines which
affect the cooling system selection and performance are presented in Figure 2 of
Volume I. Although it seems obvious that regenerative cooling would be more ap-
plicable to long, steady state firing than to pulse rocket application, other limi-
tations on various cooling techniques require a more detailed study to define the
cooling technique limitations imposed by the thrust-time restart requirements.

Figure 89 illustrates the relationship between engine thrust level
and total burning time in the case of a constant thrust soft lunar landing with a
spacecraft of a typical weight that could be launched by Saturn type boosters. The
vehicle energy (in terms of unbraked impact velocity) and propellant effective ex-
haust velocity are fairly representative and are used only as examples. A curve
showing the tradeoff between thrust level and burning time is desirable because of
the probability of different cHamber cooling techniques being applicable for dif-
ferent portions of the curve. The near optimum point from the standpoint of the
maximum landed usable weight (not considering cooling techniques) is shown in this
plot. This point and the -resultant engine design configuration may change with
chamber cooling considerations.

Figure 90 is a plot similar to Figure 89 for the case of landing
with a constant deceleration descent. The conditions of vehicle weight, effective
exhaust velocity, and total energy are the same. The required thrust levels at
the initiation of combustion and at the end of combustion are given as functions
of the total combustion period. The two curves in Figure 90 are meant to be used
together with total burning time being the independent parameter. A linear thrust
decrease with time during any particular landing is indicated on the plot. This is
not precisely true, but is sufficient for determining chamber cooling requirements.
Again, the near optimum conditions indicated may change with cooling considerations.

Figure 91 is a plot of the relationship between thrust level and
total burning time for taking off from the lunar surface. The vehicle weight has
been chosen to be compatible with the landed weight of the vehicles discussed in
Figures 89 and 90. Again, the near optimum condition is indicated. For long burn
times in a gravity field, the total impulse requirement increases imposing a weight
penalty to be considered in the choice of engine size.
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The concept of landing with a constant thrust engine with more
than one burning period is being studied. In considering a typical thrust-time
program for a thrust-to initial weight ratio of 5 (a thrust of 20,000 lbs for a
vehicle weight of 25,000 earth 1bs), the time sequence would be approximately 240
seconds of burning, 128 seconds off, 15 seconds of burning, 4O seconds off, and
3 geconds of burning.

The concept of a pulse rocket burning cycle is limited primarily
to low thrust precise corrections of vehicle attitude.

Two thrust-time considerations which enter directly into the
cooling system choice are the thrust transient requirements at ignition and shut-
down. Regenerative cooling requires pressurization and filling of the cooling
passages and may delay thrust buildup. Also, at engine shut down, a large volume
of propellant is trapped in the lines which may produce an unacceptable residual
thrust. Even in an ablative engine, some residual thrust is produced by outgassing
of the heated thrust chamber wall.

2. EPEngine Configuration and Location

From the mission studies of References 1 and 2, a nunber of
promising spacecraft configurations have been proposed. Engine sizes and locations
for various lunar missions are shown in Figures §22to 94 . Spacecraft engine con-
figurations proposed for earth orbit rendezvous and docking missions are shown in

Figure 95.

Some of the thrust chamber design considerations related to the
engine configuration and location are listed below:

a. Spacecraft Envelope

The spacecraft envelope may limit engine size or exit nozzle
expansion ratio. Reference 1 provides the following vehicle envelope restrictions
for Centaur, Saturn, and Nova vehicles:

Vehicle Envelope Restrictions Centaur Saturn Nova
Maximum diameter ins. 120 220 260
Minimum diameter ins. - 154 154

The diameter of the Apollo spacecraft for some missions is 154 inches.

b. Soak-Back Limitations

Heat stored in the thrust chamber walls at shutdown must be
dissipated by radiation and conduction to the adjacent structure or to space.
During firing, this heat may have been contained within the chamber or absorbed by
the flowing propellants. After shutdown, the outside of the chamber walls may con-
tinue to rise in temperature and also the heat may be absorbed by the stagnant pro-
pellants. When considered in terms of the long storage times required of propul-
sion systems to be used on extended space missions, the conduction heat transfer
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between the propellant tanks and the thrust chamber through feed lines and sup-
porting structure may be the critical factor in limiting the storability of certain

propellants (cryogenics).

3. Space Environments

The spacecraft engine will be subject to both operation and
storage in the space environment. The elements of the space environment which most
directly concern the thrust chamber design are as follows:

l. Zero gravity

2. Vacuum effects

3. Meteoroid penetration

4. Ionizing radiation

5. Solar radiation

6. Heat transfer to space

T. Re-entry from space

A great amount of information is becoming available on how the
space environment affects both materials and physical phenomena (References 10
through 28). The success of the satellite programs indicates that these space
effects are not prohibitively detrimental. Space effects are much more critical
in crew survival, mechanical, optical, electrical, and electronic component per-
formance, and propellant storage. The more important effects of space environment
on thrust chamber design have been covered in the sections on cooling method ap-

plicability.

4. Space Mission Maneuvers

a. Orbital Corrections

In determining the propulsion requirements for orbital cor-
rections, most of the orbital maneuvers which it might be desirable to accomplish
have been considered. These include the following.

. Control of orbital perturbations

. Control of orbit eccentricity

. Orbital plane changes

Orbital altitude variation and control
. Orbital epoch changes

O\ Ut & W o

Correction of injection errors (References 5 and 6).
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(1). Control of Orbital Perturbations

(a). Atmospheric Drag

The most significant disturbance, from the stand-
point of absorption of orbital energy, that confronts a satellite that must pass
over the earth at low altitudes is atmospheric drag. The propulsion requirements
to overcome atmospheric drag, and still allow the satellite to remain at its
established altitude, is best satisfied by the use of the attitude control system
rather than the propulsion itself.

(b). Earth's Oblateness Effect

For a satellite in orbit with eccentricities of
0.05 or less, the earth's oblateness effects four elements of motion as follows:

1. The period of revolution

2, The rate of rotation of the orbital plane

3. The rate of rotation of the major axis of
the orbit

4. The oscillation in the radial distance.
The most practical of these to require correction is the rotation of the orbit
plane. The propulsion requirements to compensate for the rotation of the orbital

plane due to the earth's oblateness are presented in Table IX.

(¢). Solar Radiation Pressure

A variation in altitude of satellites with large

surface to mass ratios can be caused by solar radiation pressure. However, the
corrections are small and they could be made with a system which combined attitude

control and station keeping.

(d). sSatellite Perturbations Due to Lunar and
Solar Gravities

The only effects of solar and lunar gravities -
which significantly change the motion of the satellite are the regression of the
nodes and the oscillation of the orbit-inclination angle. These effects can also
be controlled by a combined attitude control and station keeping system.

(2). Orbit Eccentricity Control

Operational requirements may make it necessary to change
the eccentricity of satellite orbits so that large spatial coverage can be obtained
with one satellite. Propulsion requirements necessary to effect these changes are
presented in Table IX.
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(3). Orbital Plane Changes

Plane changing maneuvers may be required to perform
various functions required of an earth satellite, such as correction of regression
of the nodes due to the earth's oblateness, interception and rendezvous, and vary-
ing spatial coverage. The propulsion requirements to cover both eircular and
elliptical orbits and rotation angles to 45° for orbital altitudes between 300 and
19,310 nautical miles are presented in Table IX.

(4). Orbital Altitude Variation

Propliléion requirements to transfer from one circular
orbit to another coplanar, circular, orbit of different altitude were determined
for both impulsive and continuous thrust assumptions, and are presented in Table
IX. Thrust modulation will generally not be required; different velocity require-
ments at perigee and apogee can be achieved by two different burning times. Also,
a zero g, restartable propulsion system will be required to perform the perigee
and apogee operations unless a continuous, low thrust propulsion system is used.

(5). orbital Epoch Change

(). Types of Maneuvers

Three types of maneuvers for achieving an epoch
change are 1yfThe use of continuous thrust, 2. Impulsive transfer to a.new path
for a fast or emergency transfer, and 3. A special case of the fast transfer in
which the satellite is required to achieve the epoch change in one orbital revolu-
tion.

(v). Continuous Thrust

When an epoch change is made using continuous
thrust, veloecity is increased during the first half of the transfer, and decreased
during the second half, or vice versa, depending on whether the epoch change is
"leading" or "lagging". The original circular orbit path is maintained during the
maneuver by directing an appropriate thrust component along the radial axis. The
radial thrust component is directed inward, when the velocity is greater than that
for the normal circular orbit, and outward when the velocity is below orbital.
Generally, the application is in the terminal phase of a normal rendezvous maneuver.

(¢). Fast or Emergency Transfer

Fast or emergency transfers require transfer by
impulsive thrust to new trajectories. If the desired position leads the satellite,
the new trajectory is either elliptical or hyperbolic, depending on the magnitude
of the change required. If the desired position lags the satellite, the new tra-
Jectory is elliptical. The new trajectory intersects the original circular orbit
in such a manner that the satellite achieves the epoch transfer at the time of
intersection. At this instant, a velocity increment, equal to that applied to
transfer it to a new trajectory, returns the satellite to the original circular
orbit.
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(d). Special Case of the Fast Transfer

In the special case of the fast transfer, the
satellite is transferred by impulsive thrust to an elliptical path in such a manner
that it takes one revolution of the satellite to reach its desired position in the
orbit.

The propulsion requirements to achieve an epoch
change dictate two general types of systems. The small changes can be made with a
continuous thrust system. However, the change requiring greater capability must
use the impulsive system. The basic requirements are presented in Table I.

(6). Correction of Injection Errors

The two methods which could be used to correct injection
errors are: 1. Correction of the errors in each orbital parameter separately,
termed the three-impulse transfer, and 2. Correction of the errors simultaneously
by one maneuver by selecting a point in the desired orbit and then utilizing con-
tinuous thrust to attain that position.

In the three-impulse transfer method, errors in eccen-
tricity and perigee altitude can be corrected simultaneously, and errors in the
orientation of the orbit plane can be corrected by an additional impulse. The
propulsion requirements to correct anticipated nominal injection errors, using the
three-impulse transfer, are presented in Table IX. The continuous thrust method is
a rendezvous technique which is discussed in the following section.

b. Orbital Rendezvous

Three basically different techniques of rendezvous are pre-
sented. The first assumes that rendezvous is composed of two operations: a course
injection maneuver and a fine correction of the injection errors. The second,
meking also a plane change, is called a dogleg maneuver, and the third, which used
not only the phases of the above two, but further employs an orbital epoch change,
and it is termed emergency rendezvous (References 7, 8, and 9).

(1). Rendezvous with Nominal Injection Errors

It was assumed that out-of-plane errors are small com-
pared to in-plane errors and the resulting two-dimensional rendezvous determines
the propulsion requirements. The basic propulsion requirements necessary when the
satellites are in the same orbit were determined in connection with the orbital
epoch change. The general propulsion requirements for the terminal phase of the
rendezvous are presented in Table IX.

(2). Rendezvous with the Dogleg Maneuver

Rendezvous with the dogleg maneuver is generally com-
prised of two separate maneuvers, the first to make the orbital plane change and
injection, and the second to make the final rendezvous. With the final rendezvous
requirements previously tabulated, the first portion of the rendezvous requirements
are presented in Table IX under "Dogleg Maneuver.'

UNCIASSIFIED - 60 -




MAC AST

%’Z."ﬁ’..di serour. 5981
!!Ng;! A:E:;lFlm VAN NUYS, CALIFORNIA w

(3). Emergency Rendezvous

An emergency rendezvous may include any or all of the
following operations: 1. Injection with the dogleg maneuver, 2. Orbital epoch
change, and 3. Final rendezvous. Thus, the velocity requirements for emergency
rendezvous are the sum of the individual maneuvers. The propulsion requirements
are summarized in Table IX.

¢c. Satellite 2k-hour Mission

Propulsion requirements are presented for three basic opera-
tions which the satellite propulsion system will be required to perform. These
operations are: 1l. Orbit correction for the :e€limination of injection errors and
for the achievement of the desired longitudinal ‘position, 2. Station keeping to
maintain orbit velocity and angular position of the orbit plane, and 3. Attitude
control to correct the effects of solar pressure, thrust misalignment, initial
rates, and undisturbed limit cycle. The propulsion requirements are shown in
Table IX.

d. Lunar and Interplanetary Trajectory Corrections

The propulsion requirements necessary to perform lunar and
interplanetary trajectory corrections were established by error analysis for the
nominal trajectories and particular missions considered. Midcourse corrections
are presented for Earth-Moon flights and Earth-Mars flights. Terminal corrections
are presented for outbound lunar and Mars flights and return flights from the Moon
and Mars.

(1). Midcourse Corrections

Midcourse correction capability will be required on
ballistic space flights where the uncorrected trajectory results in miss distances
which are excessively large for terminal phase correction. The propulsion require-
ments for midcourse correction are affected by: 1. The initial burnout-velocity-
vector accuracy, 2. The allowable miss distance at the target vody, 3. The accuracy
of midcourse navigation and guidance equipment, L. The accuracy with which the
corrective maneuvers are carried out, and 5. Any significant inaccuracies in asstro-
physical data.

Propulsion requirements for midcourse correction for
Earth-Moon flights and Earth-Mars flights are presented in Table IX.
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(2). Terminal Corrections

Terminal corrections are classed as the impulses applied
to correct the final perigee distance after the target body's gravitational effects
have become predominant, Correction of position error in determining the final
perigee distance as the target is approached is also a terminal maneuver.

Propulsion requirements for terminal correction are pre-
sented in Table IX for outbound lunar and Mars flights and return lunar and Mars
flights.

e. Lunar and Planetary Orbiting Maneuvers

In determining the propulsion requirements for orbiting the
Moon and Mars, the perigee altitude established by the terminal trajectory correc-
tions will form one apsis point for orbiting maneuvers of the target body.

(1). Lunar Orbiting Maneuvers

Lunar approach trajectories with approach velocities
ranging between 4000 and TOOO fps were considered. The propulsion requirements
under these conditions are presented in Table IX.

(2). Mars Orbiting Maneuvers

Propulsion requirements are tabulated in Table I for
Mars orbiting maneuvers both with and without the use of atmospheric deceleration.
The range of hyperbolic approach velocities varied between 8000 and 27,000 fps.

Without atmospheric deceleration, approach perigee radii
vary from 200 to 2000 nautical miles with apsidal radius ratio ranging from 0.70 to
3.8.

Atmospheric braking can be utilized to reduce consider-
ably the propulsion requirements for Mars orbiting maneuvers. One technique is to
make several grazing passes to reduce the apogee altitude to that desired and then
add the required velocity increment to raise the perigee altitude to establish the
required orbit. The only propulsion requirement provided for this type of maneuver
is to vary the perigee altitude.

f. Lunar and Planetary Landings

(1). Lunar Landings

Four methods for landing on the moon were. considered:
1. Direct radial approach and landing, 2. Injection into circular orbit and a
gravity turn from orbit to landing; 3. Injection into circular orbit, transfer to
lower orbit, deceleration to zero velocity at low orbit altitude, and vertical
descent to the surface, and 4. Injection into cireular orbit, transfer to ellipsical]
orbit with a perigee altitude of 50,000 feet, deceleration to zero velocity and
descent to 100 feet, and hover above surface.
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Errors in measured quantities and operational parameters
were considered in the first three cases but not in the fourth. The upper circular
orbits considered ranged from 50 to 200 nautical miles and the lower circular orbit
was 5 nautical miles.

(a). Direct, Radial Landing

A direct, radial landing on the moon from a 66-
hour trajectory with no errors in ignition altitude, requires an ideal velocity
increment of 9000 pps. When an error in ignition altitude and an assumed error of
0.33% in measured quantities is considered, the velocity increment totals 9800 to
9900 fps. The propulsion requirements for direct landing is presented in Table IX,
and the sample thrust-time program is shown in Figure 96.

(b). Gravity Turn from Circular Orbit

The velocity increment required for injection into
circular orbits from 50 to 200 nautical miles is 3200 fps. The velocity increment
to land (zero velocity at 5 nautical mile altitude) is 5700 to 6000 fps. The pro-
pulsion requirement for this phase is presented in Table IX.

To let down from 5 nautical miles, the velocity
inerement is 1100 fps. The thrust time program for these maneuvers 1s presented
in Figure 97.

(¢). Transfer to Low Circular Orbit

This method considered coplanar transfer from
either the 50 or 200 nautical mile circular orbit to a 5 nautical mile circular
orbit, deceleration to zero velocity at constant altitude, and letdown to the surs A
face of the moon. An additional penalty of from 2 to 4% is also paid in transfer
to the lower orbit and the resulting errors in this approach.

(d). Transfer to Elliptical Orbit

A fourth approach to landing on the surface of
the moon considered similar phases of the above examples (References 7 and 8). The
establishing of a 200 nautical mile circular orbit permits initial survey of the
surface and location of the landing area. A transfer is then made into an ellip=-
tical orbit which has a perigee altitude of 100,000 feet over the landing area.
Deceleration to zero velocity and descent to an altitude of 100 feet is then made.
The additional requirement to hover at this altitude is also given.

(2). Mars Landings

The propulsion requirements for landing on Mars are pre-
sented in Table IX for both a direct, radial landing and a landing from orbit.
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(a). Direct, Radial Landing

Due to the extremely high approach velocities,
between 18,000 and 31,000 fps, direct entry into the atmosphere cannot be made by
a single retrothrust before landing. Excessive aerodynamic heating and extremely
high deceleration rates would be experienced unless retrorocket firing began
hundreds of miles above the surface. The total propulsion requirements, including
the error effects associated with the high ignition altitude, are presented in
Table IX.

(v). Landing from Mars Orbit

The propulsion requirements to land on Mars on a
gravity turn from orbit are higher than for the direct approach when atmospheric
braking is not used. However, the technigue of entering an elliptical orbit, em-
ploying atmospheric braking and then landing has orvit-landing propulsion require-
ments comparable to the direct approach (Table IX.)

g. Lunar and Planetary Takeoffs

(1). Lunar Takeoff

Propulsion requirements for lunar takeoff with ascent
trajectories into lunar orbits and direct injection on return flights to the Earth
assumed constant thrust and specific impulse, a gravitational constant, nonrotation
of the moon, and optimum thrust to mass ratio. (Table IX.)

(2). Mars Takeoff

Propulsion requirements for Mars takeoff were similar in
nature to those of the moon with the additional consideration of the Martian at-
mosphere. Single stage vehicle configurations were assumed adequate for takeoff
into a Mars orbit. However, the velocity increment for ascent trajectories for
direct flights to the Earth requires staging. The propulsion requirements for both
cases are presented in Table IX.

B. Propellants

Heat transfer analyses and design studies in this report have been
limited to consideration of a group of liquid propellants considered typical of
three classes of currently interesting propellants for spacecraft engines. These
groups were:

1. Earth storable hypergolics
2. Cryogenic (hydrogen fuel)

3. Space storable
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The propellants for which physical and thermodynamic properties are
presented include the following oxidizers and fuels:

Oxidizers Fuels

02 H

F2 NEHh

OF2 0.5 NEHM - 0.5 UIMH
Neou BEH6

]
Rocket performence analyses were made and are presented in Figures 182
through 1kl for space operation at an expansion ratio of L40:l.
sent the following parsmeters:

Isp ve. O/F, P, (shifting equilibrium)

Combustion temperature (T, vs. O/F,P,

Characteristic velocity (C*) vs. O/F,

Combustion products vs. O/F at constant P,

The propellant combinations for which these analyses are presented are:

Neoh/NEﬁh Figures
N30, /0.5 NoH), = 0.5 UDMH Figures
02/H2 Figures
FQ/H2 Figures
OFE/H2 Figures
OF2/32H6 Figures
OFE/CHM - Figures

Material Properties

Several different classes of available thrust chamber materiasls may
be defined with respect to applications and physical characteristics.

These graphs pre-

Fe

122,
125,
128,
131,
133,
136,
139,

123,
126,
129,
132

13k,
137,

140,

Figures §8 through 121.

124
127

130

135
138

141
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Characteristics of each group may be defined and compared with avail-
able materials and their properties. The groups considered in this section are

a. Heat resistant alloys readily fabricated

b. High temperature refractory metals

c. High temperature refractory nonmetals

d. Ablative materials

e. Insulation

The materials considered under these headings are those with particu-
lar application to the thrust chamber fabrication including cooled and uncooled
components. The properties discussed are those which define the limits of its

applicability and facilitate completion of preliminary thrust chamber designs.

The ablative materials and their properties have been discussed
separately in Section III-D.

1. Heat Resistant Alloys

The nickel and cobalt base alloys have met technological demands
very well up to about 1800°F, but usually require special techniques to satisfy
higher temperature requirements. There appears to be little hope of extending the
usefulness of these superalloys much beyond 2200°F. The thorium dispersed nickel
(TD-Nickel) is reported (Figure 142, 143 and 1L4) to have usable strengths to
2400°F, but degrades beyond that range to its melting point of 2650°F.

Typical properties of the nickel and cobalt alloys and TD-Nickel
are presented in Figures 142, 143, 14k and 145.

Fabrication operations on the nickel and cobalt alloys are con-
sidered routine. Cutting, machining, and forming are conducted at room tempera-
ture. Welding can be conducted by both manual and automatic operation with weld
joint efficiencies in excess of 85%. TD-Nickel is available only as bar stock at
this time, but some experimental sheet has been made. Tt is reported that cutting,
forming, and machining present no problems. Welding of this material is being
investigated by DuPont Metal Center, Baltimore, Maryland.

The titanium alloys are usable at temperatures below 1000°F. The
superalpha alloys are weldable and have high creep strength in the 700 to 1000°F
temperature range., It is anticipated that these alloys will be usable at low
temperatures (<0°F). Selected mechanical properties of these alloys are given in
Table X.
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2. High Temperature Refractory Metals

Although there is no exact definition of refractorymaterials, by
common usage this term is limited to materials with a melting point sbove 3400°F.
A listing of refractory materials would include the metals listed in Table XI and
the materials in Figure 148. There is considerable research in the development of
refractory metal alloys. Table XII is a listing of molybdenum, columbium, tantalum,
tungsten, and vanadium alloys which are in production. Figures 146, 147, 148, and
149 indicate ultimate tensile strength/density to test temperature relationships
for some of the refractory metals. Table XIT lists the producers of the various
refractory metals.

a. Molxbdenum

Typical molybdenum alloys are TZM and 0.5 titanium-molybdenum
These alloys have usable strengths up to 3500°F, but available oxidation resistance
coatings limit their use in oxidizing environments to temperatures below 3200°F.

Since molybdenum was the first of the refractory metals to be
applied to aerospace use, more experience has been obtained with it. All conven-
tional forming methods have been used, but hot working is generally necessary.
Forgings of molybdenum and its alloys are being produced in commercial quantities.

A study of the mechanism to improve the high temperature
strength of Mo-0.5 percent Ti-C alloy indicated that both nitrogen and carbon
strengthens this alloy with carbon being the more effective.

Climax Molybdenum Corporation has fabricated ring sections of
Mo-0.15 percent Ti-0.003C alloy with a low transition temperature and high tempera-
ture strength. Stock of this alloy displayed 16% elongation in tension at -100°F
and absorbed more than 60 ft/lb in room temperature unnotched Izod and Charpy tests.

b. Columbium (Niobium)

Typical columbium alloys are Fansteel FS82 and Wah Chang C103.
These and other alloys have usable strengths up to 3100°F but must be coated for
oxidation resistance. The coatings available are similar to those for molybdenum ag
discussed in a following section on coatings.

Commercially pure columbium is ductile and may be formed cold
by any conventional technique including spinning. Sheets of C103 as thin as 0.0LO
inch thick have been spun down to 0.020 inch without wrinkling (Reference 222).
Columbium and its alloys may be welded and brazed, and chemically milled. These
alloys are new and many of these fabrication techniques are still in the develop-
ment stage. Mechanical properties of columblum alloys are presented in Figures
149 and 150.
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c. Tantalum

A typical alloy is 90% tantalum 10% tungsten. This alloy has
exhibited usable strength at 5000°F (Figure 151). However, no satisfactory oxida-
tion resistant coating has been developed for operation above 3300°F.

Commercially pure tantalum sheet is ductile and readily fabri-
cated by any conventional method and heating is not required. The 90Ta-10W alloy is
more difficult to fabricate and frequent intermediate anneals are needed. Explosive
forming has not been applied to tantalum and its alloys, but the method appears
feasible. Some work has been done in forging commercially pure tantalum and the
90Ta~-10W alloy. Work in extruding tantalum and its alloys by both conventional and
high energy rate methods appears promising. Ductile welds may be obtained in
either commercially pure tantalum or 90Ta-10W alloy using conventional techniques.
Machining ié~f8irly good.

Tantalum is available in all forms including foil. Sheet
widths are available up to 24 inches.

d. Tungsten

Very few alloys of tungsten are commercially available at the
present time and even these are still in the development stage. The 85W-15Mo
forging study (Reference 2@3) has reached its preliminary feasibility goal. Pure
tungsten sheet has exhibited usable strengths up to 5000°F (Figure 151). Some work
has been done on developing oxidation resistant coatings for tungsten (Figures 152
and 153 ), but all this work is in the development stage.

Most of the work done to date in forming sheet tungsten has
been done by spinning and drop hammer forming. For any forming operation, including
gshearing and bending, hot working is necessary. Fairly complex nozzle configuras’
tions have been fabricated by spinning tungsten manually in the case of ghett less
than 0.125 inch thick, and by hydrospinning or spin forging for thicker sheet.

Slip casting, plasma spraying, and vapor deposition promise to
be important means of fabricating tungsten shapes in cases where properties ob-
tained by working are not needed. Machining of tungsten is difficult and abrasive
wheels offer the best means of metal removal. Chemical milling is an effective al-
ternate, and electrical discharge machining is also being used. Welding tungsten by
conventional methods results in an embrittled joint. However, where this can be
tolerated, arc welding and spot welding may be used. Work is being done on tungsten
using electron beam welding and offers some promise. Little work has been done on
brazing but limited work at Marquardt on diffusion bonding (similar to brazing in
technique) has resulted in joint remelt (Reference 22li) temperatures near that of
the tungsten sheets.

An inhouse program at Marquardt-Ogden on the possibilities of
explosive forming of tungsten has met with some success. Also, some extrusion
work, both conventional and high energy rate, has been done and the results have
been promising.
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Massive nozzle components of cast and forged tungsten are in
production for large so0lid rockets. Pressed and sintered porous tungsten im-
pregnated with metals such as silver and copper has been in use for many years' and
is currently being evaluated for nozzle throat insert application (Reference.205).

e. Coatings for Refractory Metals

The refractory metals oxidize rapidly at elevated temperatures
in the presence of oxygen (Figure 154). The oxides of the more common refractory
metals melt or sublime at lower temperatures than the metal. To fully utilize the
capablilities of the refractory metals at high temperature, a protective coating is
required. Figures 152 and 153 and Table XIV give a graphical presentation of coat-
ing capabilities.

3. High Temperature Refractory Nonmetals

These nonmetallic materials which include those having the very
highest melting temperatures, the greatest high temperature strength (Figure 155)
and those which have the greatest resistance to oxidation are also subject to the
most severe restrictions in their application because of brittleness and poor
thermal shock resistance. Also, except for the oxides, they are subject to oxida-
tion in a liquid rocket environment. The book, "High Temperature Technology",
Reference 212), gives an excellent review of these materials.

Table XI lists the materials which have melting points above
4LOOO°F. Of these materials, graphite in its various forms is the most generally
adaptable to high temperature rocket application even though the carbides of haf-
nium, tantalum and zirconium melt at slightly higher temperatures.

Graphite has structural strength up to near its sublimation tem-
perature of 6650 to 6700°F. The available mrades and forms of graphite are con-
stantly being improved for rocket and high temperature applications. Protective
coatings have been developed to operate in the 3000 to LOOO°F range depending upon
the exact environment and time required. Handbooks and data sheets on meny grades
of graphite are available from the vendors, References 22§ and 226 ). Graphites may
be tailored for many specific requirements by varying such parameters as the fol-
lowing:

a. Structure

(1). Fine grain flour base (ATJ)

(2). Coarse grain (HIM)

(3). Anisotropic (Pyrolytic graphite)

(4). Fibrous (Pluton, carbon and graphite cloth)
(5). Porous Carbon

(6). Graphite hollow spheres

(7). Pyrofoam (expanded pyrolytic graphite)

(8). Powder, as lubricant or insulation
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b. Densgity

Density varies from 1.0 lb/ft5 (Pyrofoam) to 140 lb/ft3
(pyrolytic graphite). ATJ grade averages 109 1b/ft>.

c. Thermal Conductivity

Thermal conduttivity varies by a factor of two in extruded
grades in directions parallel and normal to the direction of extrusion. In pyrolyt-
ic graphite the ratio may be 200 (Reference 177). The powdered and foamed graphites
are effective high temperature insulators.

d. Thermal Expansion

Thermal expansion may be varied to match available surface
coatings. A state of the art survey of high temperature materials and their appli-
cations is presented in several feature articles in the January 1963 issue of
"Aerospace Engineering" (Reference 206).

L, Insulation

For many reasons including envelope restrictions and aerodynamic
considerations, spacecraft engines may have to be buried within the vehicle during
operation. As noted in Volume I, the exterior temperature of the engine may vary
during operation from 300°F for regeneratively cooled structures to 4000°F for
radiation cooled or heat sink engines. If the effective exterior temperature of
the engine must be limited, it can be done in at least the following three ways:

#. Increased heat sink capacity
b. ILiguid cooled shielding
c. High temperature, low density insulation blanket.

Design data on insulations suitable for high temperature applica-
tion are presented in terms of insulation weight required to drop the external
thrust chamber temperature to 250°F at a heat flux of 350 Btu/hr—ft2 (Figures 156
and 157). Heat fluxes through different insulation compositions are presented in
Figure 158.

Available high temperature insulations with their compositions and
temperature limits are given in Table XV. References 215 through 221 provide addi-
tional sources of design data.
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TABLE I

EFFECTS OF MIXTURE RATIO ON HEAT SINK CAPACITY OF COOLANT FUELS

NQOH/NEHM

Mixture Ratio

Variation of

Variation of

(o/F) Local Heat Flux Heat Sink Potential
1.0 0.972 1.12

1.2 1.0 1.0

1.5 1.02 0.89

2.0 1.022 0.79

N,0,,/506 UDMH-50% NoH),

1.5 0.965 1.222

2.0 1.0 1.0

2.5 1.01 0.88

Op/Hp

Mixture Ratio

Variation of

Variation of

(0/F) Iocal Heat Flux Wall Temperature
k.o 0.88 0.79
5.0 1.0 1.0
6.0 1.075 1.23
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TABLE VI

COOLANT FLOW RATIO REQUIREMENTS

Conditions:
I¥ = 30 inches
T = L4000 1lbs
CR = 1.5
P, = 150 psia
Maximum Wall
Temperature = 2200°R
PROPELLANT (N,0y,/NyH),) wc/wp
. Combustion Nozzle Divergent Divergent
Cooling Method Chamber |[Convergent |A/A* 1310 | A/A%10340
Liquid Film 0.134 0.0067 0.041 0.045
Gas Film 0.416 0.025 0.155 0.194
Transpiration
Liquid to 2200°R 0.0245 0.001k4 0.008 0.009
Liquid to Sat. Vapor 0.052 0.0030 0.017 0.018
Sat. Vapor to 2200°R 0.036 0.0020 0.013 0.014
PROPELLANT  (H,/F5)
Liquid Film 1.15 0.052 0.356 0.39
Gas Film 0.066 0.0022 0.0148 0.016
Transpiration
Liquid to 2200°R 0.0072 0.0005 0.0035 0.0037
Liquid to Sat. Vapor 0.083 0.0028 0.016 0.018
Sat. Vapor to 2200°R 0.0072 0.0005 0.0035 0.0037
)
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TABIE VI (Continued)
Cooling Method Combustion Nozzle Divergent Divergent
Chamber Convergent |A/A¥ 1= 10 A/A* 1040
PROPELLANT OF»/BoHg We /Wy
Liquid Film 1.2k 0.0511 0.451 0.54
Liquid Film -- 0.00k4T 0.026 0.029
With vapor ccoling
Gas Film 0.305 0.0121 0.108 0.12
Transpiration
Liguid to 2200°R 0.0515 0.00264 0.0227 0.0237
Liquid to Sat. Vapor 0.170 0.00855 0.091 0.0984
Vapor 540°R to 2200°R 0.0576 0.00294 0.0255 0.0266
PROPELIANT No0y,/NpH), - UDMH
Liquid Film 0.252 0.0102 0.0717 0.082
Gas Film 0.525 0.0211 0.1152 0.17k
Transpiration
Liquid to 2200°R 0,0405 0.00211 0.0156 0.015
Liquid to Sat. Vapor 0.080 0.00416 0.0317 0.030
Sat. Vapor to 2200°R 0.0604 0.00315 0.0236 0.023
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TABLE VII

CAPABILITY COMPARISON OF HEAT SINK.MATERIALS

Material k Cplo AT Time to Reach
ateria (Relative Value) (Above 100°F) AT (sec)

Pyrolytic Graphite 68.5 3000°F 126 sec
(Edge oriented)
Tungsten 35.6 3000°F 65.5
Graphite 28.2 3000°F 51.9
Molybdenum 24.8 3000°F 45.6
Tantalum Carbide 23,2 3000°F ho.7
Copper 117.0 1700°F 29.7
Silicon Carbide 4.4 3000°F 26.5
Tantalum 12.0 3000°F 22.1
Beryllium 52.5 2000°F 21.2
Silver 81.0 1000°F 5.39
Steel (4130) 13.4 1500°F 2.38
Stainless Steel 5.8 2000°F 2.35
Aluminum (Pure) 38.6 800°F 1.46
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TABIE VIII
MATERTALS WHICH SUBLIME BETWEEN ROOM TEMPERATURE AND 2000°C*
(3632°F)
Substance Specific Melting Boiling Heat of Sublimation or
Gravity Point Point Dissociation*¥*
(°c) (°c) (Btu/1b)
ALN 3.26 >2200 Sublimes 6700
at 2000
81zl 3. 4L 1900 Sublimes 5040
( pressure)
Mg5N2 -- -- Decomposes 3830
at 1500
NHMF 1.315 -- Sublimes 2310
NH),CL 1.527 - Sublimes 1790
at 335
ALF; 3.07 -- 1270 (760 mm) 1630
KCNO 2.048 - Decomposes 1600
TOO to 900
3182 - - Sublimes 1250
cdo 6.95 >1426 Decomposes 1250
900 to 1000
Zn0 5.606 >1800 Sublimes 1000
at 1800
Nago 2.27 -- Sublimes 1000
at 1275
Teflon 2.2 -- Sublimes 800
at 750
GeO - - Sublimes 790
at 710
1 ¥ Reference RO6"
Primary source of data, Handbook of Chemistry & Physics, 40th Edition,
pp. 526-687, Chemical Rubber Publishing Company, Cleveland, Ohio, 1958.
1 *¥* Computed from thermodynamic data.
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SOME SOLIDS THAT MELT ABOVE LOOO°F

TABLE XTI

Class Solid Chemical Formula | M.P. B.P. Specific Gravity
(°F) [ (°F) (Dense Form)

Pure Metals [Tungsten W 6170 [10,600 19.3
Rhenium Re 5755 | 8,700 20.0
Tantalum Ta 5430 [.7,L400 16.6
Osmium Os 4890 | 9,600 22.5
Molybdenum Mo 4750 | 6,700 10.2°
Ruthenium Ru 4530 | 4,900 12.2
Iridium Ir Lays | 8,700 22.5
Niobium Nb 4380 | 6,000 8.6

Oxides Thoria ThOo 5970 | 7,950 9.7
Magnesia MgO 5070 | 5,115 3.6
Hafnia HfOs 5020 9.7
Zirconia ZrOo 4850 | 7,800 5.6
Ceria CeO0p 4710 T.1
Calcia Ca0 4710 | 5,160 3.3
Beryllia BeO 4620 | 7,700 3.01
Strontia Sr0 4380 | 5,430 L7
Yttria Y503 4370 | 7,800 4.9
Lanthana Lo03 4180 | 7,600 6.5
Urania U0 4140 | 7,450 11.0
Chromia Crp03 4115 | 5,430 5.2

Complex Thorium Zirconate ThOpZr0Oo 5070

Oxides Strontium Zirconate | SrOZrOo 4890 5.5
Barium Zirconate Ba0Zr0Oo 4890 6.3
Beryllium Zirconate 3Be02Zr0o L4590
Zirconium Silicate Zr0o5i0p 4390 4.6
Calcium Zirconate Ca0zr0o 4olo 4.8

Carbides Hafnium Carbide Hre T025 12.2
Tantalum Carbide TaC TO1l5 14.5
Zirconium Carbide ZrC 6890 | 9,200 6.7
Niobium Carbide NbC 6330 7.8
Tantalum Carbide TapC 6150 15.0
Titanium Carbide TiC 5680 | 7,900 4.8
Tungsten Carbide WwC 5190 [11,000 15.5
Tungsten Carbide WoC 5170 (115000 17.2
Vanadium Carbide Ve 5730 | 7,050 5.4
Aluminum Carbide AlLC3 5070 3.0
Molybdenum Carbide MozC 4860 8.9
Molybdenum Carbide MoC 4870 8.5
Thorium Carbide ThCp 41810 9.6
Thorium Carbide ThC 4760 | 9,050 10.6
Boron Carbide ByC Lhko 2.5
Silicon Carbide sic 4350 3.2
Uranium Carbide Uco 4260 | 7,900 11.3
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TABLE XI (Continued)

Class Solid Chemical Formula | M,P. B.P. Specific Gravity
(°F) (°F) (Dense Form)

Borides Chrome Nickel Boride | CrpoNiB) 4000 6.0
Tantalum Boride TaBp 5440 12.60
Niokbium Boride NoBo 5250 T.21
Chromium Boride CrBp 5000 5.6
Tungsten Boride WoB 5020 16.7
Hafnium Boride HfBo 5540 11.2
Zirconium Boride ZrBs 5430 6.1
Tungsten Boride WB 5290 16.0
Titanium Boride TiBp 4710 .5
Thorium Boride ThBs 4530 8.545

Silicides Tungsten Silicide WzSis 4250
Tantalum Silicide T29Sig 4550 12.7
Tantalum Silicide Ta5513 4530 11.6
Zirconium Silicide ZrgSis 4080

Nitrides Hafnium Nitride HfN 5990
Boron Nitride BN 5430 2.2
Tantalum Nitride TaN 5400
Zirconium Nitride zZrN 5390 6.9
Titanium Nitride TiN 5340 5.4
Scandium Nitride SeN 4800
Uranium Nitride UN 4765 14.32
Thorium Nitride ThN 4280
Aluminum Nitride A1N 4050

Miscellaneous| Cerium Sulfide Ces L4440 6.0
Carbon Graphite c 6800
Uranium Monocarbide | UC 4490 13.63
Beryllium Nitride BezNp 4000 | Dissoc.
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TABLE XTI

ALLOYS OF MOLYBDENUM, COLUMBIUM, TANTALUM, TUNGSTEN, AND VANADIUM

MAC A3

Nominal Alloy Composition, Weight Percent
(Balance Refractory-Metal Base)
Alloy
W| Mo| Taj Cb |Hf| Ti Zr v C Other
|Molybdenum-Base Alloys ‘
Mo-0.5 Ti 0.5 0.02-0.05
TZM 0.5 0.08 0.02-0.08
TZC ' 1.25 0.15 0.15
Mod. TZC 1.27} 0.29 0.3
Mo-0.05 Zr 0.054 0.024
Mo-=0.5 Zr 0.5 0.02
Mo-1.5 Cb 1.5 0.25
Mo-25 W 25 0.11 0.05
Mo-0.5 TiO, 0.5 Ti0p
Columbium-Base Alloys
F-48 15f 5 1 0.1
F-50 151 5 5 1 0.05
Cb=-T 28] T
Cb-16 20 10 3
Cb=-65 7 0.8 0.075 0.11 0, 0.02 N
Cb-TL 10 5 0.03 0.12 0, 0.02 N
Fs-80 0.75
Fs-82 33 0.75
D-31 10 10 0.06 0.05 0, 0.0T N
D-41 20| 6 10
15-20 15 20
20-20 20 20
Cb-Ta=-W~Zr 10 2k 1
C-103 10 1 0.5
Cb=-Mo=Hf 5 5
Cb=-W-Zr 10 5
Cb-Ti 8
Cb-V-Al 3 3A1
Tantalum=-Base Alloys
Ta-10W 10
Ta=-10Hf-5W 5 10
Ta=-30Cb-T7.5V 30 Te5
Tungsten-Base Alloys
W-1ThO, 1 ThO,
W=-2ThOo 2 ThOo
W-10Mo 10
W-15Mo 15
W-25Mo 25
W-0.38 TaC ) . 0.38 TaC
Vanadium-Base Alloys
V-50Cb 50 ’ T
V-20Cb=5Ti 20 5
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TABLE Xill
PRINCIPAL PRODUCERS OF REFRACTORY METALS

Primaty Producers of Reftactory Metals

Molybdenum

Tungsten
Tantalum

Columbium

Chromium

Vanadium

Hafnium

Platinum

Palladium

Osmium

Ruthenium

Rhodium

Iridium

Rhenium

Anaconda Co.,
New York

x

>

Bishop, J. & Co.,
Malvem, Pa.

>

x

Carborundum Metals Co.,
Akron, N. Y., div. Carborundum Co.

Chase Brass & Copper Co.,
Waterbury, Conn.

Cleveland Tungsten, Inc.,
Cleveland, sub, Molybdenum Corp. of America

Climax Molybdenum Co. of Michigan, Inc.,
Detroit, div. American Metal Climax

Du Pont de Nemours & Co., Inc., E. I.,
Wilmington, Del.

Elmet Div.
Lewiston, Maine, North American Phillips Co., Inc.

Engelhard Industries, Inc.
Newark, N. J.

Fansteel Metallurgical Corp.,
North Chicago, 1.

Firth Sterling Inc’,
Pittshurgh

Foote Mineral Corp.,
Philadelphia

General Electric Co.,
Schenectady, N. Y.

Goldsmith Bros.,
Chicago, div. National Lead Co,

Internalional Nickel Co.,
New York

Johnson-Matthey & Co., Limited
London

Kawecki Chemical Co., Inc.
New York

Kennametal Inc.,
Latrobe, Pa.

Metalfs & Controfs Division
Attleboro, Mass., Texas lnstruments, Inc.

Metals & Residues, Inc.,
Springfield, N. J.

Molybdenum Corp. of America
Pittshurgh

National Research Corp., Metals Division
Cambridge, Mass.

Oregon Metallurgical Corp.,
Albany, Oregon

Phelps Dodge Corp.,
New York

Reactive Metals Inc.,
Niles, Ohio

Reduction & Refining Co.,
Kenilworth, N. J.

Shield Alloy Corp.,
Newfield, N, J.

Stauffer Chemical Co., Metals Div.
Richmond, California

Sylvania Electric Products, Inc.,
Chemical and Metallurgical Div., Towanda, Pa.

Temesca! Metallurgical Corp.,
Berkeley, California

Union Carbide Metals Co., div. of Union Carbide Corp.,
New York

Universal-Cyclops Steel Corp.
Bridgeville, Pa.

University of Tennessee
Department of Chemistry, Knoxville, Tenn.

Vanadium Corp. of America
New York

Wah Chang Corp.,
New York

Westinghouse Electric Corp.,
| Pittsburgh
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TABLE XIV

TIME-TEMPERATURE CAPABILITY OF VARIOUS REFRACTORY METAL COATINGS
(See Figures 152 and 153 for Data)

Tdent. Coating Metal Coated by Tested by
1 |Zinc, Hot-dipped and Condi- Columbium Naval Research | Naval Research
tioned at 1800°F Laboratory Laboratory

2 w-2 CP Molybdenum |Chromizing Corp.| Chromizing Corp.
3 |Cr-50Ti vac. dist. 0.001" F-48 Thompson-Ramo Thompson-Ramo
+ Si vac. dist. 0.001" Columbium Wooldridge Wooldridge
4 [Aluminide or Beryllide Tantalum Sylcor Sylcor
5 |Pack Silicide Tantalum Alloy|Battelle Battelle
(experimental)
6 |Pack Silicide Tantalum Battelle Battelle
T |Cr-50Ti vac. dist. 0.001" D-31 Thompson-Ramo Thompson-Ramo
+ Si vac. dist. 0.00L" Columbium Wooldridge Wooldridge
8 |w-2 CP Molybdenum |Chromizing Corp.| Chromizing Corp.
9 W-2 CP Molybdenum [Martin Co. Martin Co.
10 CR-ZrO2 Electrodep. Tantalum Value Engr. Value Engr.
11 Cr-ZrB2 Electrodep. Tantalum Value Engr. Value Engr.
12 Sprayed 50Sn~50A1 Tantalum and Sylcor Sylcor
Tantalum-tung.
13 |Modified W-2 Columbium + Bell Bell
10Mo + 10T7i
1 7-1 Tungsten Bell Bell
15 |Flame Sprayed Rokide Z 0.5 Ti-Mo Bell Bell
(0.027")
16 |Electroplated Cr (0.005") 0.5 Ti-Mo Bell Bell
CPA 1800
17 |[Detonation Sprayed IM-5 0.5 Ti-Mo Bell Bell

(Mo, Cr, Si 0.008 to 0.016")

18 Thermomet T-55 0.5 Ti-Mo Thermomet Marquardt
Pack silicide
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TABLE XIV (Continued)

Ident. Coating Metal Coated by Tested by
19 Al-Cr-Si 0.005" Flame Sprayed|CP Molybdenum |Climax -« ¢limax
20 Al-Cr-Si 0.005" Flame Sprayed{CP Molybdenum |Marquardt Marquardt
21 Hot-dip in Molten Copper CP Molybdenum |Metalwork Metalwork
Silicon Bath Plansee Plansee
22 Chrome Plate 0.001" Fansteel 82 Fansteel Fansteel
Columbium
23 Chrome Plate 0.002" Fansteel 82 Fansteel Fansteel
Columbium
2L S5i-Co Co-Deposited, Single 0.5 Ti-Mo Pfaudler Pfaudler
Cycle Pack Diffusion,
0.0025 inch thick
55 |cr, S8i, Co Separate 0.5 Ti-Mo Praudler Pfaudler
Layers, Pack Diffusion
0.0015 inch thick
26 Cr + Si Co-Deposited then 0.5 Ti-Mo Pfaudler Pfaudler
Co on top, Pack Diffusion
0.0035 inch thick
27 Si + Cb Co-Deposited Single 0.5 Ti-Mo Pfaudler Pfaudler
-Cycle Pack Diffusion
0.0035 inch thick
28 Cr, then 8i + Co Co-Depositedj 0.5 Ti-Mo Pfaudler Pfaudler
on top Pack Diffusion,
0.0025 inch thick
29 Cr, Co, Si Separate Layers, 0,5 Ti-Mo Pfaudler Pfaudler
Pack Diffusion 0.0035 inch
thick
30 Mo-Cr-Al-S5i-B Alloy Pack CP Columbium |WADD WADD
Diffusion
31 Thermomet 254B Pack C-103 Thermomet Marquardt
Silicide Columbium
32 Thermomet 259B Pack CP Tungsten Thermomet Marquardt
Silicide Sheet
33 Durak MG-F Slip-cast Chromizing Corp.|Marguardt
Tungsten
UNCLASSIFIED - 104 -
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TABLE XIV (Continued)
Ident. Coating Metal Coated by Tested by
3L Durak MG CP Mo. sheet |[Chromizing Corp.|Marquardt
35 PFR-1 D-31 Columbium|Pfaudler Pfaudler
36 AMFKOTE-3 Columbium AMF AMF
37 AMFKOTE-2 Molybdenum AMF AMP
38 Durak B Molybdenum Chromizing Chromizing
39 W-2 Molybdenum Chromalloy NASA, Langley
40 PFR-5 Molybdenum Pfaudler Pfaudler
41 Mo Sis in a Continuous Molybdenum G.E. G.E.
Matrix of An-Si Alloy
(Paint & Sinter)

Lo G.E. System 400 (Flame Columbium or |G.E. G.E.
Spray A1205 then spray Tantalum
glass frit and sinter at
2T00°F)

L3 Zirconium Diboride Molybdenum Picatinny Picatinny
(0.010 inch thick) Arsenal

L Undercoat of ZrO, + Metal Molybdenum Picatinny Picatinny
(metal rich); overcoat of Arsenal
ZrOy + Metal (2rO, rich)

45 T0% Pt-30% Rh (0.002- Molybdenum or |AMF AMF
0.005 inch) Tungsten

L6 G.E. System 300 (Flame Molybdenum G.E. G.E.
sprayed A1205 over Chrome
plate)

g G-1k Al-5Cr-5Ti CbAl Columbium Sylcor Sylcor
(dip coat) (0.002- 2
0.004 inch)

418 Paint & Sinter Mo-Si-Ni Molybdenum Narmco Narmco
or vapor plate (+ Cr, Al,
Mn, etc.)

L9 MoSis + Ni-Cr Electro- Molybdenum or |Thiokol Thiokol
phoretic coating (0.005- Tungsten
0.010 inch)
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TABIE XIV (Continued)
Ident. Coating Metal Coated by Tested by
50 MoSig+6% Ni Electrophoretic Molybdenum Vitro Vitro
(0.001-0.003 inch)
51 Vought II, IX Multi-cycle Molybdenum Chance-Vought Chance-Vought
pack cementation F-48 Columbium
FS82 Columbium
52 Al-Si Flame sprayed Molybdenum or {National ... National
Tantalum Research Research
53 Simultaneous Electroplate Molybdenum American Machine{American Machine
and electrophoresis of Tantalum & Foundry & ‘Foundry
ceramic and cermet (0.002 Columbium
to 0.005 inch) Tungsten
54 Beryllide Pack Cementation Molybdenum Brush-Beryllium |Brush-Beryllium
or plasma spray or paint Tantalum Co. Co.
and sinter Columbium
55 PFR-6 0.5 Ti Pfaudler Pfaudler
Molybden
56 Aluminide CP Cb Gen. Telephone Thompson-Ramo
& Electronics Wooldridge
57 Aluminide D-14 Cb Gen. Telephone Thompson-Ramo
& Electronics Wooldridge
58 Aluminide F-48 Gen. Telephone |Thompson-Ramo
& Electronics Wooldridge
59 Pack Disilicide + Cb FS 82 Boeing Thompson-Ramo
Wooldridge
60 Pack disilicide >C-105 Pfaudler Thompson-Ramo
(modified) D-1k Wooldridge
D-31
F-48
61 PFR-1 FS 82 Pfaudler Thompson-Ramo
Wooldridge
62 PFR-1 D-21 Pfaudler Thompson-Ramo
Wooldridge
63 Cr-Ti-Si 3-cycle vacuum FS 85 Thompson~-Ramo Thompson-Ramo
deposition Wooldridge Wooldridge
6L Pack disilicide, dual cycle Fs 85 Pfaudler Thompson-Ramo
+ Cr + Mo Wooldridge
65 Aluminide 90TA-10W Marquardt Marquardt

UNCLASSIFIED

- 106 -




5981

SeYeTJy pue
‘o3epaoo ‘uxel ‘JuiasaTs

(ser8a2qTF pPayOLaT)

(@3e3s £pesis) 4,0002 ‘adey ‘UYqo01o ‘xoqIJ MIng BOITTS snoaxqIip |uosdwoyy, °I °*H TTsexyay
. qQuawsd JuTFe0D PuUB ‘IYO0TQq sI2qQtJ
(@3e3s Lpeays) 41,0022 ‘aaded ‘qTa3 ‘IoqIl MINgG 21B'UB1TY UMISSEB10d quodnd TTsxad Ly,
(®3e3s £peays) 4,0002 S1TaJ pue JI8qQTJ HIng I9QTJ BOTTIS~-BUTUNTY |STTTAUBW-SUYO X3TJOWISYT,
TToJ xaddoo
(@3e3s £peays) J4,00LT pue 1aq1l zqJEnb ‘TTO0J UOTABINSUT
(@%e3s £peais) J4,000T s3oyueTq JoLBT-TATINW |unuTumye pue SBTII2qTJd SpUTT -xadng
(se% weoJoxhd pue STBIJISYEN aang a31udern
m BUTZTPTXO-UouU uT) JI,0008 ‘ITT0Joxfg ‘saqny ‘soq®id 231ydesd ordoxastuy -eradwal, yITH OTLToILg
w (0002 J-uTl ‘Apesys) J,0002
) (TOST A-UTW ‘xY 002) d,00¢T sodeys 3sed> pue ‘3o0Tq ‘98W STTTAUBK=-SUYOL A-UT
[
5
z (@3e3s Lpesys) 4,0002 gom pur jBW ‘4793 ‘I=qrJ YMIng SISQTJ zZ3Iend | STTTAUBK-SUYO L Z31enP~0I0T
%
> (s12q1J uTTO®Y) BOTTIS XOOTTM
(@3e3s Lpesys) J,00¢2 319UBTq Ppue JI9qlJ MIng ~BUTUNMT® TBISUIRW %R 3dooqeqg Toono®y
saqBUTWET
puB saqnq ‘qusmed JUIFROD
‘sadeys aTqeaseY ‘prBIq ‘pIoo
‘adeyr ‘ygoto ‘edoa ‘uaesf ‘Sut
-YOTM ‘Buraox ‘qayuerq ‘aaded
‘preoq ‘MooT1q ¢‘sxaqrl s1deas
mw (@3e3s Lpeays) J,00¢2 |SuoT o ‘psysem ‘paddoys ‘yIng J9qQTJ BOTTIS-BUTUNTY UMPUNIOqIR) XBIJISQT I
L 1TUT] a2anyexadus], wWIO g uoT1Tsodwo) JOPUSA uoTABTNSUT
1V 4
w
mm SYOLVINSNT HINLVIHIWHT HOIH
- _—
= AX HI9VEL
_—

- 107 -

UNCLASSIFIED

L9V OVW



UNCLASSIFIED

W gt

VAN NUYS, CALIFORNIA

REPOAT,

YOL 11

MAC AST?

HEAT FLUX AT UPPER LIMIT OF NUCLEATE BOILING

vs. BULK TEMPERATURE OF COOLANT
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MARQUARDT ABLATIVE TEST DATA

10 -

1.0 -

CHAR DEPTH - inch (Erosion + Char)
i

0.1

LT | N

PROPELLANTS: Nzou/sog UDMH - 50% N,H,

DATA POINTS ARE TAKEN 1/L-inch UPSTREAM FROM THROAT INSERT OR AT MIDPOINT
OF BILLET CHAMBERS WiTH WATER COOLED THROATS

TEST NO, 3082 ”

A 25 1b BILLET CHAMBER WITH A THROAT {NSERT, STEADY STATE
OPERATION AND PC = 100 psia

© 60° LAMINATED USP XAO-3h

O 90" LAMINATED AVCO X2001

TEST NO. 3075
BILLETS OF 60° LAMINATED HITCO 1401P WITH THROAT INSERTS AND

PC = 100 psia

O A 25 ib THRUST CHAMBER, STEADY STATE OPERATION, THREE RUNS, AND
8 TO 10 MINUTES OFF

A A 100 1b THRUST CHAMBER, STEADY STATE OPERATION, FIVE RUNS AND
8 TO 10 MINUTES OFF

A A 25 1b THRUST CHAMBER, PULSE OPERATION, AND A DUTY CYCLE OF
30 SECONDS ON AND 60 SECONDS OFF

TEST NO. 3092

A 25 1b BILLET CHAMBER WITH A WATER COOLED THROAT AND STEADY
STATE OPERATION

B FIBERITE MX-19 CHOPPED SQUARES

(3 USP 5504

E] FIBERITE MX 2646, ALSO USP 5067 (SAME DATA POINT)

O
(> FIBERITE MX 2646, NO POST CURE (EXCESSIVE GLASSING) O

[j USP 5504, NC POST CURE (EXCESSIVE GLASSING) AR

SATURN SIV-B SUBSCALE | ﬁﬁ

A 25 1b BILLET CHAMBER WITH A THROAT INSERT
Vi

(O 60" 1401P BILLET, STEADY STATE OPERATION

60" 1401P BILLET, PULSE OPERATION, AND A DUTY CYCLE OF
10 SECONDS ON, 600 SECONDS OFF AND 13 SECONDS ON, 200 SECONDS OFF

SATURN Siv-B FULL SCALE S.L., | | |

<> hSe LAMINATED USP 5067 {OGDEN), STEADY STATE OPERATION

1| || |

4

10 100

TEST DURATION - seconds

400

20212 LINCI ASSIFIEN - 158 -
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MARQUARDT ABLATIVE TEST DATA

40 e e e e e £ 4118t o it = 18 e e - P ]
| | | |
TEST NO, 3162
O A 25 1b 1401P ASTROLITE BILLET CHAMBER, WITH A DUTY CYCLE OF 200 ms ON AND
250 ms OFF, NZOl'/ZS MMH-75 N2Hl+, THROAT DIAMETER = 0.4, AND Pc = 100 psia
@ CHAR DEPTH BELOW THROAT INSERT
TEST NO. 3056
10
O A 25 1b FLIGHT WEIGHT, 39 USP RESIN COMPOSITE WALL, SIMULATED DYNASOAR
DUTY CYCLE, Nzou/25 MMH-75 Nth, THROAT DIAMETER = 0.4, F’c = 140 psia, -
AND 6 ON 6 INJECTOR,
E— A\ SAME AS A\ EXCEPT WITH NZO“/SO UDMH-50 N2HL4’ SINGLE-DOUBLET INJECTOR ]
& SAME AS /\ EXCEPT WITH A DUTY CYCLE OF 75 ms ON AND 750 ms OFF
— /A SAME AS /\ EXCEPT WITH A THROAT INSERT R
- . A 25 1b BILLET CHAMBER WITH A THROAT INSERT, DUTY CYCLE OF 75 ms ON AND
bt 750 ms OFF, AND NZOM/SO UDMH-50 NZHQ (CHAR DEPTH IS BELOW THE INSERT)
>
3+
:' P A 100 1b BILLET CHAMBER WITH A THROAT INSERT AND P.G. LINER, STEADY STATE
g OPERATION, 6 ON 6 INJECTOR, AND N, O /25 MMH-75 N_H
S - 274 2°h
+ @ CHAR DEPTH IS BELOW THE THROAT FOR (J
s S o
w //
o g///
LJ =
A —
o .
5 A F'\)
= .
1 /‘-
& © —
& —T
o * _ &
<
=
(&]
CHAR DEPTHS ARE GIVEN FOR THE
CHAMBER UNLESS OTHERWISE NOTED
THE THRUST CHAMBER WALLS OF DATA
POINTS £\ AND A WERE BURNED THROUGH
0.1
10 100 1000
TIME - seconds
28F12 UNCLASSIFIED - 159 - FIGURE 52
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RESULTS OF MARQUARDT 100 POUND THRUST ABLATIVE MOTOR TEST
TOTAL RUNNING TIME - 190 seconds

TEST INFORMATION:

THOMPSON 1401 P ASTROLITE

TMC RMOO5 THROAT INSERT

RUN NO. 1451-1455, TEST ENG, EM-3-3101-1

PC = 90 psia (NOMINAL), SINGLE-DOUBLET INJECTOR

DUTY CYCLE:
1. 90 RUNS - 10 CYCLES OF 200 ms ON AND 200 ms OFF 10 SECONDS OFf
2. 2 RUNS - 2 SECONDS EACH
3. 3 RUNS - 2 SECONDS EACH
TOTAL ABLATED MATERIAL (EROSION + CHAR)

THROAT = NEGLIGIBLE

CHAMBER (MAX.) = 0.8 inch AT INSERT

i.4 inch JUST UPSTREAM FROM INSERT

~N

r— CHARRED AREA

ORIGINAL SURFACE — ~ T

———]— GRAPHITE INSERT

__EPOXY
ZIRCONIA MIX

\\——n-luo1 P ASTROLITE

A

A0F 41

1INCLASSIEILER - 160 -
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VOr. 11

RESULTS OF MARQUARDT 100 POUND THRUST ABLATIVE MOTOR TEST
TOTAL RUNNING TIME - 200 seconds

TEST INFORMATION:

THOMPSON 1401 P ASTROLITE

TMC RMOO5 THROAT INSERT

RUN NO, 1450, TEST ENG. EM-3-3101-1

PC = 90 psia (NOMINAL), SINGLE-DOUBLET INJECTOR

DUTY CYCLE:
1. 1 RUN - 5 SECONDS
2. 1t RUN - 195 SECONDS
TOTAL ABLATED MATERIAL (EROSION + CHAR)
THROAT - NEGLIGIBLE
CHAMBER (MAX.) - 0.46 inch AT INSERT
0.95 inch JUST UPSTREAM FROM INSERT

/- CHARRED AREA

2.25 inches

i T
\
ORIGINAL SURFACE — J/r .

?————i ~—~GRAPHITE [INSERT

__ EPOXY
ZIRCONIA MIX

A\

\H——-1Q01 P ASTROLITE 2.25 inches

30F40 UNCLASSIFIED - 161 -
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CHAR DEPTH RESULTS OF SIV-B SUBSCALE TEST 3093
CONTINUOUS vs. PULSE COMBUSTION

\\SILICA FIBEROORlENTAT|ON\\

RMOO5 COATED
GRAPHITE INSERT

TTIIIOI;’mM

—— SILICA FIBER
—— ORIENTATION

P

1 L 1 1 ) 1 ) I 3 i 1 1 1 l 1

NOTES:

1. 1401P RESIN USED IN BOTH S/N1 AND S/N2 ENGINE FABRICATION

2. ——DENOTES CHAR DEPTH OF S/N1 ENGINE AFTER CONTINUOUS COMBUSTION
FOR 168 SECONDS

3, ———DENOTES CHAR DEPTH OF S/N2 ENGINE AFTER PULSE COMBUSTION

FOR 270 SECONDS
4., S/N2 ENGINE DUTY CYCLE: 10 SECONDS ON, 600 SECONDS OFF AND 20
CYCLES AT 13 SECONDS ON, 200 SECONDS OFF

MAC A6T3

5, —-——-DENOTES ESTIMATED CHAR DEPTH AFTER 250 SECONDS OF CONT INUOUS
COMBUSTION
6. TEST INFORMATION: S/NI S/N2
PROPELLANTS - MMH/N204 Pe = 0.35 psia 0.035 psia
PC = 143 psia 151 psia
'SP= 303 seconds 303 seconds
0/F = 1.58 1.60
20FE29 1INCIASSIEIEN - 162 - FIGURE 55
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ANALYTICALLY DETERMINED TEMPERATURE HISTORY
OF REFRASIL-PHENOLIC SLAB AT SEVERAL DEPTHS
2800
TEMPERATURE OF SURFACE = 3100°F
| $S = 1 inch —~
2400} SLAB THICKNE 1 ) W}/
0’/\/
2000 ///f/////
. /)
& 1600 // Y
. -
§ —-EXPERIMENTAL/
5 1200 DATA —
P
\QY‘
800 o A
v
Yoo |
4 ///
400
///f
L

400 600

TIME - seconds

800

1000
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DECOMPOS ITION OF PHENOLIC IN VACUUM vs. SAMPLE TEMPERATURE

40
o
N 30
= VACUUM PRES. = 102 MM HG
3
o
>
Y
o
z 20
(V4]
w
o
)
<
—
= EST. 1 YR,
g 10 d ¥
Lnl‘.l /
By
v.
0
100 300 500 700 900

SAMPLE TEMPERATURE °F
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TIME - TEMPERATURE FLEXURAL STRENGTH OF A PHENOLIC-GLASS LAMINATE

100 ROOM TEMPERATURE CONTROL ( 67,500 P.S5.1,)
O= <4 _—500°F
0/0""—7 / / 500°F
T 300°F //
v 80
/7

, A

& 7

w /’
xu o W
- ~
SF (o ‘G'/\»-soo%—‘

<
L o
&y
~a
s
= ui
>0
Ss .
u'LL.

W \K

[ S °

-700°F

@ A

W 20 < Al

Q.

\o\ 800°F
900°F—-—\ '
0 Lt 1t1tll 1 “ll\/L 1 lllun\'l Ll Lt

0.1 1 7 10 100 1,000
EXPOSURE TIME AT TEST TEMPERATURE (HOURS)
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THERMOGRAV I METRICAL ANALYS!S OF HEATED THERMOSETTING RESINS

- \\%\
) \\
80 \w\\ N
\ SILICONE
\ —
L 60 .
= \
3 \
NS
2 \\\ PHENOLIE RESIN
= \ S~
~ — |_EPOXY RESIN
\%mES|N
'\
20 T
0 |
0 200 400 600 800 900
TEMPERATURE - °C
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THERMAL CONDUCTIVITY OF ASTROLITE

VOL 11

I
4.0
T8
Wl o
] HEAT FLOW .
=1 e 90" END GRAIN
x|, /—
a3l % 3.0 , e
I
¥ AN
\—IPARALLEL GRAIN
2.0 —
HEAT FLOW
|
200 300 400

MEAN TEMPERATURE - °F

500
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EFFECT OF RESIN CONTENT ON THERMAL CONDUCTIVITY
OF PHENOLIC - GLASS FIBER LAMINATE
2.5 C .
O
~
o \O\
? ~—

= 2.0
N

S

S 15

ﬁ ———

N e e

= 4+

= ~

5 1.0 VA d

2 v

=

o

(@]

-

2 0.5

[ s

lil (© ORIGINAL LAMINATE

- /N CHAR LAYER

; | |
0.2 0.4 0.6 0.8 1.0
WEIGHT FRACTION OF RESIN
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CORRELATION OF H=AT TRANSFER FROM AIR STREAM TO WATER FILM

4000
3000
COOLANT FLOW
TUBE I NNER PER CIRCUMFERENTI AL
DI AMETER LENGTH
(In.) (Lo/(sce)(ry)
O 0.116
o =2 0.116
2000 T O 2 0.09% T T
0% !
|
° |
v,!. » _ -
i
o |
! 1
|
1000fF - b I ;,ffl c e
- s mett S O S Up—
800 ../_/./frm._ — ___1 4
t
|~ w002 Re**(REFERENCE 2] )
600} Y m_} e
NOTES
AIR TEMPERATURES = 800° T0 2000°F
AIR MASS VELOCITIES = 39.h4 T0 B1.7 pps/sa FT
) REFERENCE: NACA REPORT R1087
400 (a [ { 1 | | [ I
2 4 6 8 10 15x105
DGq
I‘g
izeecine HINCHASSIELED - 176 - FIGURE 69
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MAC A7

VARIATION OF FILM-COOLED LENGTH WITH FILM COOLANT FLOW RATE
FOR DIFFERENT FILM COOLANTS

9.0
8.0 Ad—-0 /
7.0 Ny
| S S
& $/|/$
g § v
? 6.0 : A o]
e I COOLANT  _©,_
= s (8TU/LB)
e m
=
W 5.0 & o+ WATER — 1170
a AMMONIA— Bi8
- | ALCOHOL — 486
S FREON — 86
© 4.0 —0
3 /
—d
§ /
3.0 / // FREON-113 v
2.0 17—
REFERENCE: PURDUE REPORT I-62-2
1.0 b d " WIS |
0 0.04 0.08 0.12 0.16 0.20 0.24
FILM COOLANT FLOW RATE, (LBS/SEQ)
i=scint HINCIASSITEIED - 178 - FIGURE 71
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TEMPERATURE RATIO PARAMETER AS A FUNCTION
OF THE LENGTH PARAMETER FOR AMMONIA FILM

COOLANT - GAS STREAM REYNOLDS NO.= 0.55 (10°)

1.0

W
0.8 SYMBOL D"g
fc
B
0] 1
N A 6.11
Y Bl o §\ i 3
A N
P N 4
A
5 ’_> 0.4 \Q [
Co A o
=13 N
1 ' AA
._-0" ’_Ui
1] O
=y
0.2
\o
REFERENCE: JPC TM-62-5
0.1 | | | |
0 1.0 2.0
2Mdh, X W
—_— (9
wfc va Wi
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TEMPERATURE RATIO PARAMETER AS A FUNCTION
OF THE LENGTH PARAMETER FOR COMBINED
FILM AND CONVECTIVE COOLING
W
SYMBOL T ——9 —
wfc
0 w000'R 1.2
o O 3400°R 7.9 |
- A 4200°R  11.9
= = v 3100°R  37.8
I +
£ 2 = S O]
L)oo o
z B IE e o A
+ +
A . o
= 0.4 o
] ] v
| £ v
T
I
Q
REFERENCE: PURDUE RPT. TM 62-5
0.2 | |
2.0 3.0 4.0 5.0
IMDLhy
— In(1 -—'X-)
Wic  Cpl
101 5405 JINICLASCIELED - 180 - FTICURE 73
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TEMPERATIHRE RATIO PARAMETER AS A
FUNCTION OF THE MODIFIED LENGTH PARAMETER
FOR COMBINED FILM AND CONVECTIVE COOLING
1.0 I I
W
SYMBOL T 4
J wfc
e o
o 3 .
| - \ A 4200°R 1.9
:’ s '; \V4 3100°R 37.8
- \o
| +
0.6 N0
:5 3 f z 0)
i 3
3] ol ~
e e ‘7
+ +
S S W
e | £
| N
Q v \V/
0.24& -
0.25 0.5 0.75 1.0 1.25 1.5
0.1 MDLA
. Wln(l-..)lf_)-O.OS
ch c pl
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BN S

STANTON NUMBER COMPARISON WITH NACA RESULTS

il

e

TEST No. INJ STA DQEFL
o | 2
A 2 2 2
o 3 3 2 v —
(0] ® 4 4 2 v
A 5 5 2
B 6 5 3
o 7 5 a4
S 8 6 2
14 B 9 7 2 —
v 10 A |
, o B
o @ 12 85 1,2
v 13 85 1.2
& 14 8BS 13 —
TESTS No.1 TO 1L USED
“ WATER FILM COOLANT
] REFERENCE: JPL REPORT 32-58
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A ) A
A
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MOTOR PERFORMANCE DECREASE WITH FILM COOLING
TEST No. COOLANT
O 5 WATER
0.12 A5 AN —ALCOHOL —
O 18 GASOLINE
@® 20 METH ALCOHOL
o A 22 AMMONIA
iy m 24 JET FUEL
\ 1
"o THESE TESTS USED INJECTOR No 5
_.? AT STATION 2
'
g I‘”o = 184 sec (wy, = O)
by 0.08 w'otol : wfc + wpropollonn
= REFERENCE: JPL REPORT 32-58
% (80% ANILINE-20%
= FURFURYL ALCOHOL-
3 RFN
G i
© INERT
§ FILM COOLANTA /|8
i ‘B/ A
5] O
=
© 0.04 f/ u
o /A’DA
= |
* L
L
O
- S

FRACTIONAL FILM - COOLANT FLOW RATE ch/w TOTAL

0.04

0.08
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STABILITY EFFECTIVENESS vs. DIMENSIONLESS FILM COOLANT FLOW
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VARIATION OF FILM COOLED LENGTH WITH FILM COOLANT FLOW RATE

10.0
COMBUSTION TEMP = 4100R
COMBUSTION PRESS. = 500 PSIA

A REYNOLDS NO. = 0.55(10%)

2.0— g " " = 0.955(105)

) ' = 1.83(10%9)

8.0 A

7.0 : /

6.0

o //

/

3.0 l 7 Vv

FILM COOLED LENGTH, (IN)

REFERENCE: PURDUE REPORT 1-62-2

“
0.04 0.08 0.12 0.16 0.20
FILM COOLANT FLOW RATE, (LB/SEC)

2.0 b
0
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NASA HELIUM COOLANT DATA FOR SLOT HEIGHT OF 1/8 inch
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0.2 \

T, 1500°R; M, 0.5 \

REFERENCE: NASA TN D-130
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LIQUID FILM COOLING REQUIREMENTS FOR THE DIVERGENT
AND CONVERGENT NOZZLE SECTIONS
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GAS FILM COOLING REQUIREMENTS FOR
THE CONVERGENT NOZZLE SECTION
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MAC A3

APOLLO SPACECRAFT CONFIGURATION FOR LUNAR LANDING
(TYPICAL ENGINE LOCATIONS )

/9

1. Command Module
2. Equipment Storage

9. Earth Storahle
Liquid Propellants

4. Abort and Lunar
Takeoff Propulsion

8. Lunar Landing Module

8. Hydrogen Tank

7. Liquid Oxygen Tank

8. Lunar Landing Propulsion
9. Landing Gear

5
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NOVA LUNAR ORBITING AND RETURN MISSION CONFIGURATION,
SELECTED ALTERNATE 3 - C;

RETURN PAYLOAD
20,000 Ibm

ONE LH, TANK —~ 154D 220D

DIAMETER 168 in.
LENGTH 196 in.
USABLE PROPELLANT
7300 1bm

JETTISONED PAYLOAD

JETTISONED PAYLOAD 69,140 ibm

69,140 ibm

FOUR LO, TANKS

EACH:

DIAMETER 76 in.
USABLE PROPELLANT
9150 1bm

TWO MAIN ENGINES

EACH:
10K THRUST, TvVC
ABLATIVE CHAMBER
PRESSURE FED,
Pc = 100 psia

ONE_ABORT ENGINE
100K THRUST, FIXED
ABLATIVE CHAMBER
PRESSURE FED,

PC = 100 psia
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/////////’“‘TWO NZOQ TANKS
7 \
/ \

\

NOVA CIRCUMLUNAR MISSION CONFIGURATION, ALTERNATES - A

RETURN PAYLOAD

DIAMETER 52 in,

TWO AEROZINE-50 TANKS
DIAMETER 48 in.

ONE MAIN ENGINE

10K THRUST + TVC
ABLATIVE CHAMBER
PRESSURE FED, P_ =
100 psia ¢
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SPACECRAFT ENGINE CONFIGURATIONS FOR RENDEZVOUS MISSIONS

LOX TANK

TArsPonDER SEYANATION
—\ -t
DOCKING STRUCTURE —one e ' 28° A-1 DOCKING CONE
DoCKING KIT
namswvEs
woznx
PROPELLANT u : R-1 VERNIER

saTumN
STANDARD MANEUVER EWGINES

J2
PAYLOAD MOUNTING: \] rwsm. a1 L
ning wnr
/ HANRWER PROPELLANT

ATTITUDE NOTZLE.

$-1v 3 T 1o
VITR INSULATION,
HICROMETRORITR
PROTRCTION

TANKER

Concept for Saturn S-IVB/R1 Docking Kit Concept for Docking with a Tanker
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VAN NUYS, CALIFORNIA

PHYSICAL AND CHEMICAL PROPERTIES OF OXYGEN

PROPERTIES REFERENCE
Freezing Point, °F at 1 atm -361.9 32
Boiling Point, °F at 1 atm -297.45°F e
Vapor Pressure in °R, atm log P = -419.31 T 32
+ 5.2365 - 0.00648T
Density, em/cc 11.4% g/cc at -297°F 32

MAC ASD3

Viscosity Centipoise 0.241 x 10'8 Centipoise at.-297°F 32
Critical Temperature, °F -181.08°F 32
Critical Pressure, psia 736.9 psia 32
Molecular Weight 3%2.00 32
Thermal Conductivity, Btu/hr ft °F 0.4696 x 107¢ Btu/hr £t °F at -298°F 32
Heat of Formation, Kcal/mole -3.109 Kcal/mole .at -297.45 °F 31
Heat Capacity, Btu/pound 0.405 Btu/pound °F at -297°F 31
Toxicity, Maximum Allowable Not Toxic 32
Concentration, ppm, 8 hr.
Stability to Temperature Stable %2
Stability to Shock Stable 30
AVATTABILITY
Types of Containers Insulated Containers 32
Cost 1.8 to 11.4 cents/1b 3]
UNCLASSIFIED - 205 - FIGURE 98




A orguardt

MAC A3
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PRORELLANT PROPERTIES OF OXYGEN
3.0
0.44
g 2.0 0.42
5 o
' R 0.40 %
E “’*\ S
2 1.0 e 0.38 @
=) ’“\\ ‘a
—{0.36
10.0 7 1000.0
0 0.34
-400 300 -200 ]
TEMPERATURE - °F J/
100 1.0 // A 100.0

VAPOR PRESSURE - psia

50

VISCOSITY - centipoise
="

Py

0 [ | 0.1 / 10.0
-400  -300 -200 -400 -350  -300 -250
TEMPERATURE - °F TEMPERATURE - °F
FIGURE 99
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PHYSICAL AND CHEMICAL PROPERTIES OF FLUORINE
PROPERTIES REFERENCE

Freezing Point, °F at 1 atm -363.21°F 32
Boiling Point, °F at 1 atm -306.55°F 32
Vapor Pressure, psia’. 5.4 psia at ~-320.4°F 32
Density, gm/c¢ 1.505 g/cc at -306.55°F 32
Viscosity Centipoise 2.82 Centipoise at -315.4°F 32
Critical Temperature, °F -200.38°F 32
Critical Pressure, psia 808.5 psia 32
Molecular Weight 38.00 32
Thermal Conductivity, Btu/br ft °F  1k.3 x 1072 Btu/ft hr °F at 32°F 32
Heat of Formation, Kcal/mole -2.874 Kcal/mole at -306.55°F 31
Heat Capacity, Btu/pound 0.363 Btu/pound°R at -312°F 32
Toxicity, Maximum Allowable

Concentration, ppm, 8 hr. - -
Stability to Temperature Stable
Stability to Shock Stable

AVAILABILITY

Types of Containers Cylinders and Tankcars
Cost, $/1b $h 31
UNCLASSIFIED - 207 - FIGURE 100
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PHYSICAL AND CHEMICAL PROPERTIES OF OXYGEN DIFLUORIDE

PROPERTIES REFERENCE
Freezing Point, °F at 1 atm -3T70.8°F 31
Boiling Point, °F at 1 atm -228.6°F 31
Vapor Pressure,:psia’" 174.7 psia at -148°F 31
Density , .gm/éc 1.519 g/cc at -229°F 31
Viscosity Centipoise 0.2852 Centipoise at -262.L°F 31
Critical Temperature, °F T2.4°F 31
Critical Pressure, pais 718.8 psia 31
Molecular Weight 54 .00 31
Thermal Conductivity, Btu/hr ft °F -- --
Heat of Formation, Kcal/mole 7.62 Kcal/g mole at 273.16°K 31
Heat Capacity, Btu/pound 0.186 Btu/pound °F:at 32°F 31
Toxicity, Maximum Allowable
Concentration, ppm, 8 hr 0.005 29
Stability to Temperature Stable 29
Stability to Shock Stable 29
AVATTABILITY
Types of Containers Steel Containers 29
Cost 72 =1b Cylinders - $110
9 =1b Cylinders $55/1b 29

TUNCCASSTFTED

- 209 -
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PROPELLANT PROPERTIES OF NITROGEN TETROXIDE
PROPERTIES ‘ : REFERENCE
Freezing Point, °F at 1 atm 11.8 32
Boiling Point, °F at 1 atrﬂ T0.1 32
Vapor Pressure at T7°F, psia 17.7 32
Density at TT°F, gm/cc 89.3L 1b/rtd %2
Viscosity at TT7°F Centipoise 0.410 %2
Critical Temperature, °F 316.8 %2
Critical Pressure, psia 1469 %2
Molecular Weight 92.016 %0
Thermal Conductivity e
Btu/hr £t °F 0.0755 30

Heat of Formation, Keal/mole -6.8 31
Heat Capacity, Btu/lb-°F 0.374 '32
Toxicity, Maximum Allowable

Concentration, ppm, 8 hr. 25 31
Stability to Temperature Stable 31
Stability to Shock Stable 3]
AVATITABILITY
Types of Containers Tankcars and Cylinders 31
Cost, $/1b. 0.065 to 0,075 31

MAC AST3
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PHYSICAL AND CHEMICAL PROPERTIES OF LIOUID HYDROGEN

MAC ACT3

PROPERTIES . REFERENCE
Freezing Point, °F at 1 a tm.

Boiling Point, °F at 1 a tm. -423°F 32
Vapor Pressure, psia 13.06 psia at -394.6°F 32
Density, gm/cc 0.0012 g/cc at-423.3°F 32
Viscosity Centipoise 1.34k x 1072 centipoise at -423,.4°F 32
Critical Temperature, °F -399,7°F 32
Critical Pressure, psia 190.8 psia 32
Molecular Weight 2.016 32
Thermal Conductivity 673 Btu/ft-hr-F

Btu/hr £t °F at 136°F and 1 atm %2

Heat of Formation, Kcal/mole -1.92 Kcal/mole 31
Heat Capacity, Btu/pound °R 1.45 Btu/1b°R at 36°R 32
Toxicity, Maximum Allowable

Concentration, ppm, 8 hr. None Required 32
Stability to Temperature Stable 32
Stability to Shock Stable 32
AVATIABILITY

Types of Containers Insulated Tanks 32
Cost, $/1b. $1.75 %2
UNCLASSIFIED - 215 - FIGURE 106
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PHYSICAL AND CHEMICAL PROPERTIES OF HYDRAZINE

PROPERTTIES REFERENCE
Freezing Point, °F at 1 atm 34,7 31
Boiling Point, °F at 1 atm 236.3 31 and 32
Vapor Pressure at T7°F, psia 0.27 30
Density at 77°F, gm/cc 1.0073 31
Viscosity at T7°F Centipoise 0.90 32
Critical Tempersture, °F 716 32 and 31
Critical Pressure, psia 2231 31
Molecular Weight 32,048 31
Thermal Conductivity .

Btu/hr £t °F 0.205 30
Decomposition Rate 1.5-2% at 390°F

Violently Explosive 490°F

Heat of Formation, Kcal/mole +12,05 31
Heat Capacity, Btu/1b-°F 0.737 %2
Toxicity, Maximum Allowable .

Concentration, ppm, 8 hr. 0.5 to 1 31
Stability to Temperature Vapor is explosive 31
Stability to Shock Vapor is shock sensitive 31
AVATTABILITY
Types of Containers Tankecars 31
Cost, $/1b. 1.20 31

UNCI ASSIFIED - 22l - FIGURE 11k
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PHYSICAL AND CHEMICAL PROPERTIES OF 50% UDMH/50% N2H4
PROPERTIES REFERENCE
Freezing Point, °F at 1 atm 18 to 21 32
Boiling Point, °F at 1 atm 170 30
Vapor Pressure at 77°F, psia 2.20 20
Density at T7°F, gm/cc 0.898 32
Viscosity at 77°F Centipoise 0.817 32
Critical Temperature, °F 63k 32
Critical Pressure, psia 1696 32 and 30
Molecular Weight 41,797 30
Thermal Conductivity 0.1505 30
Btu/hr £t °F
Heat of Formation, Kcal/mole 12.251 32
Heat Capacity, Btu/l1b-°F 0.69k4 32
Toxicity, Maximum Allowable 0.5 32
Concentration, ppm, 8 hr.
Stability to Temperature Vapor is explosive 32
Stability to Shock Stable 32
AVATTABILITY
Types of Containers Tanks and Drums 32
Cost, $/1b. 0.975 32
UNCLCASSTFTED - 223 - FIGURE 116




H orguard

MAC A¢73

| ||N£:LASS|F|ED VAN NUYS, CALIFORNIA REPORT, 5981
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PHYSICAL AND CHEMICAL PROPERTIES OF DIBORANE

MAC A6T3

PROPERTIES REFERENCE
Freezing Point, °F at 1 atm.. -266. 33
Boiling Point, °F at 1 atm.. -134.5 33
Vapor Pressure at T7°F, psia See Figure 121 33
Density at 77°F, gm/cc See Figure 121 53
Viscosity at T7°F Centipoise 0.775 33
Critical Temperature, °F 62. 33
Critical Pressure, psia 581. 33
Molecular Weight 27.69 33
Thermal Conductivity 0.061 30
Btu/hr ft °F

Heat of Formation, Kcal/mole 2.9% at -134.5 33
Heat Capacity, Btu/pound See Figure 121 30
Toxicity, Maximum Allowable

Concentration, ppm, 8 hr. 0.10 33
Stability to Temperature Indefinitely

stable at -80°C 33

Stability to Shock Stable 33
AVATTABILITY

Types of Containers Cylinders 33
Cost, $/1b. $80.0 %3
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APPENDIX A
SUMMARY OF NOMENCLATURE

Symbol Description (Note context in case of duplication) Units
A Area sq in.
Ac Combustion chamber cross section area sq in.
ch Coolant jacket cross-sectional flow area sg in.
b Slot width in.
Cc* Characteristic velocity ft/sec
CF Rocket nozzle thrust coefficient -
Cp Specific heat at constant pressure Btu/lb °F
Cr Contraction ratio --
Cp Orifice discharge coefficient --
D Diameter (or hydraulic diameter) in.
D* Nozzle throat diameter in.
F Rocket engine thrust (pounds force) 1bf

(kilo-pounds) K

Fr Radiation factor (see context) --
Fe Emissivity factor -
Fa Effective shape factor --
G Mass flow rate per unit area 1b/ft2 hr
g Gravitational constant ft/sec2
H Total enthalpy Btu/1b
A= Total enthalpy change Btu/1b
h Static enthalpy Btu/1b
h Heat transfer coefficient Btu/hr £t2 °F
ISp Specific impulse F/V:Ip }E§%izs
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APPENDIX A (Continued)

Symbol Description (Note context in case of duplication) Units
Iy Total impulse 1bf-sec
J Joule's constant ft-1b/Btu
k Thermal conductivity Btu/hr £t °F
L Iength in.
¥ Characteristic combustion chamber length in.

L* = V /A%

Ln Exit nozzle length from throat to exit in.
M Mach number --
Mo Initial mass 1b
M Molecular weight ratio, main to coolant gas --
m Mass flow parameter ¢ °Rl/2/sec
MPL Mass of payload 1bs
Nu Nusselt number --
Pc Chamber pressure psia
P Pressure psia
Pr Prandtl number --
Q, 9 Heat flow Btu/hr
R Resistance to heat transfer R = 1/h or L/k .-
Re Reynolds number -
R Radius in.
R Gas constant ft/°R
S Slot height in.
St Stanton number --
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REPORT
UNCLASSIFIED VAN NUYS, Churomas :
2 0
APPENDIX A (Continued)
Symbol Description (Note context in case of duplication) Units
Temperature °F or °R
°F or °R

Temperature of combustion gas or coolant (refer to context) °F or °R

Time

Overall value of heat conductance

Gas stream velocity
Velocity

Combustion chamber volume
Flow rate

Flow rate

Critical flow rate (film cooling)

Thermal diffusivity

Ratio of specific heats
Incremental change

Coolant film thickness
Density

Viscosity

Emissivity

Exit nozzle expansion ratio
Effectiveness ratio
Temperature ratio

Pi

sec
Btu/hr ft2 °F
ft/sec
ft/sec
in.”
1b/sec
1b/sec
1b/sec

££2 /hr
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-n—;ymbol Description (Note context in case of duplication) Units
Subscript
* Condition at nozzle throat
a Ambient
ave Average
b Bulk value or free stream value
C Combustion chamber
c Coolant
e Exit plane
g Main gas stream
W Wall
r Recovery value
v Vapor
0 Initial or base
f Film
i Ideal
Inj Injection
P Primary
P Propellant
t Throat
T Total
] Surface
X Iocal value
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APPENDIX B

THEORETICAL VARIATION OF ROCKET MOTOR PER FORMANCE
DUE TO HEAT TRANSFER,
PROPELLANT STRATIFICATION EFFECTS, AND NOZZLE THROAT EROSION

B-I. INTRODUCTION

Rocket engine performance degradation resulting from heat loss, pro-
pellant stratification, and cooling passage pressure drop as expressed in terms of
specific impulse is computed. The assumptions and derivations used throughout the
analysis are presented along with results of sample calculations. To simplify the
analysis, the effects of the various cooling methods on motor performance were de-
termined separately. The effects of combined cooling methods can easily be eval-
uvated by combining the analytical methods presented.

B-IT. ANATYSTS

A. Effects of Heat Loss

The criterion of rocket motor performance is the specific impulse ef-
ficlency, that is, the ratio of the specific impulse attained in a practical system
and the specific impulse attainable in a theoretical or perfectisystem. Symboli-
cally (symbols used are defined in Section B-IV),

pe -2 (1)

By definition, the specific impulse (Isp) is the thrust output per
pound of propellant flow per second, or .

(2)

Isp =

. |

The thrust (F) is

F =

=

Ve + Ag (Pe-P,) (3)

and the propellant weight flow at the nozzle exit is

P
. e
W= /O, AeVy and /O, = 0 (&)
e—-e
Substituting Equations (3) and (L4) into Equation (2) and simplifying
2
V g+ RT P A
e e e a e (5)
I _ = -
8D v, .
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The exhaust velocity (V) can be expressed in terms of the total and
static enthalpies as

Ve =v2gT (H-h), (6)

and the gas constant (Re)’ which is a point function, is

R =JC .ékl;:t (7)
€ Pe ¥.

Substituting Equations (6) and (T7) into Equation (5) yields
o3(n-n), + Cp g1, Te
“Hle P” e P A
e €e
Isp = - (8)
Vogr (H-h)2 w

By defining enthalpy as

T
h = CT =/ CpaT
T=0

where recognition must be given the fact that Cp is not a constant at high tempera-
tures but depends upon integrated path

Equation (8) can be expressed as

I ) I o

JVoglH (l-h/H)e W

I
sp

From the basic thermodynamic relations

h CP'Il CP mave-l
== = — (P/Pp) —mm—
H Co T C T

Pp™t %\ ave

where once again a high temperature Y'is a path function between the stagnation
and static conditions, which, when substituted into Equation (9) yields
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N ¥ -1 A1
c &ave bdave
] P ¥-1 (“p
T\ e T Ty, A
= b e e _Te’e
ISp = JHe Fo1 ﬁl/2 o (lO)
Cp a’ave
(2g {1- T (P/P‘t) >
Prte €

This equation shows that fo(i' a given expansion ratio the specific
impulse is dependent only upon the square root of the total enthalpy. Consequent-
1y, any heat logs due to chamber cooling will produce a corresponding loss in spec-
ific impulse. Comparing a cooled rocket motor with an adiabatic system (and noting
that the last term is small or approaches zero in most practical cases), the
specific impulse efficiency of Equation (1) can be written as

, [H, - AH
c L d
f]: = V»l- AH > 1-1 AH (since AX is small compared to one.)  (11)
T, T, 2 H, H

C

where H, represents the total enthalpy of the adiabatic system, and AH represents
the heat loss to the cooled rocket motor. Therefore the effect of heat loss on
impulse efficiency is only one-half of the ratio of the heat loss to total enthalpy

B. Effects of Gas Temperature Stratification

Gas temperature stratification in the throat and divergent portion of
the exhaust nozzle, due to film or transpiration cooling, degrades the performance
of a rocket motor. (A sketch of the two models used in this analysis are presented
in Figure B-l.) Since by definition the specific impulse is the ratio of thrust to
the propellant weight flow,

F
Ipp = —E— (12)
Wp + Wf

where wp represent the coolant flow rate.

In Case I, it was assumed that the coolant was completely vaporized
and/or decomposed at the nozzle throat. The resultant physical change in throat
primary gas flow area produces a change in the chamber pressure and primary propel-
lant flow rate in the manner analytically described.as follows.

1. The flow through the injectors is generally expressed as
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2, The flow at the throat can be written as

PA* o
Y = ———
C*

Representing the uncooled system with subscript (o), the ratio of the
total mass flows between a cooled and uncooled system is

for a constant injection pressure (Pinj)' Rearranging the equation and dividing
through by PcO yields

. 2
Pe _ Pinj _ Yp Pini -1 (13)
P P o
cO Co WPO Co

The mass flow ratio can also be expressed as

w, T Bp”
2 = (14)
Do Pco At

By assuming a change in mass flow rate, the change in chamber pressure
and effective throat area can be determined. The variations of the primary propel-
lant flow rate and the chamber pressure with film thickness wnich is representative
of the change in primary gas throat area are plotted in Figure B-2.

Before any performance calculation could be made of a gas temperature
stratified system, it was necessary to determine the expansion ratios of the pri-
mary gas and the coolant. In order to compute the expansion ratios, a few simpli-
fying assumptions were employed which were as follows:

1. The integrity of the gases is maintained throughout the divergent
portion of the nozzle, i.e., the flows are isentropic and the
gases do not mix.

2. The process specific heats ratios and gas constants are fixed.

3. The total pressure of the coolant gas is equal to the total pres-
sure of the primary gas.

4. The total temperature of the coolant gases does not change in the
divergent portion of the nozzle.
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The area relationships of a nozzle with stratified gases are ex-
pressed as

= + i
ATe APe Afe Exit plane (15a)
and

Al = Ap¥ + Ap¥ Throsat (15b)

By simple algebraic manipulation, the expansion ratio of the coolant
‘can be expressed as

Ap /A = (A/A%), (ap¥/a,)

(8/8%) 5 = YTy (15)
The thrusts produced by the coolant and primary gases are
Fp = Pfe Afe (1+ ¥, Mf2)e - P, Afe (16a)
and
Fp = Fp_hp_ (1 W, MP2)e - Py Ay (16b)

respectively. However, the static pressures of both streams are equal. Conse-
quently, using P, as the static pressure at the exit, the total thrust can be ex-
pressed as

Fp = Pely_ (zs\fo)e + P Ay ( )l‘pMpe)e + A (Pe - Py (16)

and the thrust coefficient is

Pe A A ¥ Pe A Ap* | . ATe Pe-Pa
- ()5 () vt Ah) ) oo )3 o0
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To resolve this equation, the following parameters must be known:
the area ratio of the nozzle, the coolant film thickness at the throat, and the
ratio of the specific heats of the gases. If these parameters are known, the ex-
pansion ratios of the gases can be defined by an iterative process. This 1s due
to the fact that for a given nozzle area ratio there is only one combination of
expansion ratios that will satisfy Equations (15a) and (15p). To prove this it
is first necessary to divide Equation (15a) by the throat area (Ag) or

A
ATe Pe Afe

- + (15a1)
Ay Ay Ay
By a simple algebraic manipulation, this equation becomes
Ap /A, = (8/8%)p (Ap*/Ay) + (A/A%), (Ag¥/A) (1582)

The expansion ratio (A/A*) can be expressed in terms of the pressure ratio (Pe/P.)
in the following manner

. -3-1 1/2 -Y-1 $» +1
_ 2 2( % -1
Substituting this equation into Equation (1582) results in
b
¥p-1 1.1/2 Yp-L P +1
_ 2 _1s 2
Ap /by = (Ap*/Ay) Y1 (Pe/P), 1 (Fe/Fe)
U — +l (18)
y.-1 77%/2 o+l ¥z
R s - 2(¥p-1)
e f
2 2
+ (Af*/At) g;:i (Pe/Pc)f ‘lf ¥l (Pe/Pc) J

UdJ
Since the pressure ratios (Pe/P.) of the coolant and primary gases are
equal, it is obvious that for a given film thickness, one and only one pressure
ratio will yield the required nozzle area ratio. Establishing the expansion ratios
of the coolant and primary gases, the resolution of Equations (16), (12), and (1)
(in that order) can easily be accomplished.
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The results of sample calculations for a rocket motor with an ex-
pansion ratio of 40, a chamber pressure of 300 psia, and combustion temperature of
5750°F are presented in Figures B-3 and B-4. The ratio of specific heats assumed
for the primary gas was 1.22 and for the coolant was 1.30. Figure B-3 represents
the mass flow variations and Figure B-U4 represents the performance variations with
coolant film thickness at the nozzle throat.

In Case II the effect of gas stratification considered, it was assumed
that all of the coolant at the throat was in a liquid state with zero effective
thickness. Further assumptions were as follows:

1. The coolant is vaporized and/or detomposed completely before
it reaches the nozzle exit plane.

2. The gases do not mix.
3. The velocity of the coolant at the exit throat is sonic.

L. The chamber pressure and the primary propellant flow rate is
unaffected by the liquid film in the throat.

5. The heat lost by the primary stream to the coolant is negligible
and therefore the total temperature and pressure of the primary
gas remains constant.

As in Case I it is necessary to determine the expansion ratio of the
primary gas before the performance parameter can be computed. The area relation-
ships are

= A. + A 19a
Ap, = Bp_ + Ap_ (192)
as in Equation (15a). However,

A, = Ap¥* (19D)

in this case. The coolant flow rate at the exit can be expressed as

P, Ar m
. e
W, = e % (20a)
r- Jr

Te
and the primary gas flow rate as
o P, A* (P/Py m)m*

i e

c

(21a)
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If both flow rates are assumed to be known, the expansion ratio of the primary gas
can be determined for various coolant temperatures (th) by an iterative process.

By assuming an exit static pressure, the area occupied by the coolent is calculsted
oy

Wo NT
£ VT,

(20p)

Ap =
e
Pe l’hm*
From this and Equations (19a) and (19b), the expansion ratio (A/A*)p is determined.

The pressure ratio, obtained from this area ratio, multiplied by the chamber pres-
sure must be equal to the assumed exit static pressure. Following establishment of
the expansion ratio the performance parameters can be calculated by using Equations
(16), (12), and (1), in that order.

Results of sample performance calculations for Case II are graphically
illustrated in Figure B-5. The same rocket motor operating conditions and assump-
tions as used in the first case were used in these calculations. Neither of the
two cases, i.e., an all liquid or an all vapor phase film, exist at the throat in
an actual system but by considering the extreme cases, a means of comparison has
been established.

C. Effects of Pressure Losses in a Regenerative Cooling Passage

A pumping or pressure loss generally occurs in a regeneratively cooled
system. This loss 1s usually compensated by increasing the pumping energy. In
evaluating the effect of the pumping loss on the performance of a rocket motor,
the increased pumping energy must be charged to the energy loss of the system.
Mathematically stated,

AHyogs = By 1. * Hp.E.

Where
HH L. = Enthalpy loss due to heat loss
HP E. = Enthalpy loss due to pumping loss

The pumping loss is defined as

_ AP
Hp g, = 357
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In a regenerative cooling system where the coolant is one of the pro-
pellants, the energy losses due to heat losses are negligible. The major portion
of the heat absorbed by the walls is transferred to the propellant and is therefore
not wasted. It actually augments the heat content of the propellant prior to com-
bustion. Consequently, the enthalpy loss due to heat loss can be neglected in a
regenerative cooling system and the impulse efficiency of” Equation (11) can be
written as

o,
1=~

c

D. Effect of Nozzle Throat Erosion on Rocket Motor Performance

An analysis was conducted to determine the effect of nozzle throat
erosion on rocket motor performance for constant propellant flow and varying pro-
pellant flow. The derivations of the equations used in this analysis are presented
along with the results of calculations for a specific heat ratio (¥) of 1.24. The
results are based on the followlng simplifying assumptions which may be unattain-
able in practice:

1. The flow is isentropic.

2. The nozzle efficiency ls unaffected by the erosion.

3. The characteristic velocity (C*) remains constant and is inde-
pendent of the chamber pressure, i.e., the O/F ratio is constant

and, consequently, the combustion temperature is constant.

L. The .gases are in frozen equilibrium, i.e., the ratio of specific
heats is constant.

In order to maintain generality, the equations were derived as di-
mensionless ratios. The basic relations used are well known (They can be found in
any text book dealing with rocket performance). The symbols are defined in Sec-
tion B-IV.

1. Mass Flow Through the Injectors

2. Characteristic Velocity

C* = P Ay g (22)
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3. ZEngine Thrust

F = CpP A, (23)
Where
1/2
P+l ¥ -1
xn-1 e
2 P, - P
cp -1 220 (%;%i> 1 - (Pe/Pe) ¥ __F;__i (Ae/Ay)

Combining Equations (21) and (22), and rearranging the resultant equation yields

= 2,°
Ky = C*CDAinj '

Designating the initial values with sub-subseript o, the change in the chamber
pressure cen be expressed in terms of the initial conditions.

Pinj - Pc Ato
Ping = Feg Ay

Solving this equation for the pressure ratio yields

Pc/Pco =

2 > 1° 2 1/2
(35 /hy) (hy, /) (P0s/Pe,) (B /A)

Pe/Pe, = -1/2 gD + Y +h Frag/o D) (2k)

This equation represents the nondimensionalized change of the
chamber pressure as a function of the change in throat area and accounts for any
change in propellant flow due to the change of the pressure differential across
the injectors.
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For constant mass flow, the change in the chamber is inversely
proportional to the change in throat area. From Equation (22)

Po/Pe = Ay /At (25)

The expression representing the thrust variation can also be derived in a similar
manner. lLetting

I+ 1
3‘2 , r-1
2
K, = : (
2 y-1 I+ l)
and rewriting Equation (23)
' ) 1/2
-1
) >
F = PA; [Ks | 1 - (Pe/Po) + A (Pg - Pg)
then
1/2
-1
F/F Pohy (XKo[1 - (Pe/Pc) s + Ag(Pg - Py)
o ~ i/2
-1 /2
Po Ay | Ko| 1 - (Pe/Pc)o 7 + Ag(Pe - Py )

With simple algebraic manipulation, the expressioh becomes
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( \
34-511 A Pa/Pc 6.\
hp/hy Y ¥e |1 - (Pe/e) £ (D) |(e/?e) - pyme (26)
F/F, ={ ° Y (Pe/Pe,)
-1 N
Ko | 1 - (Pe/Po) 7 | o+ (K;)O (Po/Pe) = Pa/Pe_

If the ambient pressure (Pa) is zero (space conditions), the equation simplifies
to

X -1

At/Ato Ko 1- (Pe/Pc) 7 + (Ae/At)o (Pe/Pc)
F/F, = ¢ )(PC/PCO (26a)

- 1
\/Ké 1= (Be/Be) O |+ (Re/y) (Re/Re)
y )

Although the pressure ratio (Pe/Pe) is dependent only upon the area ratio (Ae/At),
the pressure ratio, and consequently the thrust ratio of Equation (26), cannot be
expressed explicitly in terms of the area ratio. This can easily be established
in the following manner:

From the basic relation

Pe/Pe = [l+ T-IMGQ}— d

the Mach number, in terms of Pe/Pc’ can be expressed as
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Substituting this expression into the basic relation ¥
+ 1
57 2 (¥ -1)
1 2+ (- 1) M
Ae/by = %
J+1
results in
1/2
_ .1 _J-1 I+ 1
2 2 2 le()-1
A/t = | 5T 9 (Pe/Ee) J 5 (Pe/Pc) (27-1)

Inspection of this equation shows that the pressure ratio (P./P,)
cannot be expressed explicitly in terms of the area ratio (Ag/At).

Numerical computations show that the thrust ratio of Equation (26)
is for practical purposes independent of the initial nozzle expansion ratio. The
mathematical proof is beyond the scope of this presentation.

The mass flow variation, obtained from Equation (22), is

v B A
W (Pco) <E;) (27)

Then, from the definition of specific impulse

-1
W _F 1
Ts /Iso = (F/5) (5;) - B Pc/Pco At/Ato (28)

which is independent of initial injection pressure ratio (Pinj/Pco) and, for
practical purposes, initial nozzle expansion ratio (Ae/At)o
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To effectively demonstrate the effects of nozzle throat erosion
on the performance of a rocket motor operating in space, Egquations (2&) through
(28) were numerically resolved for various initial injection pressure ratio and
nozzle expansion ratios. The results are graphically depicted in Figures B-6
through B-8. Both Figures B-6 and B-T are applicable to any rocket motor, the only
restriction being that assumption (3) is not exactly correct. The characteristic
velocity is affectéd by the chamber pressure to some extent, but the effect is al-
most negligible and may be ignored.

The performance parameters, i.e., thrust and specific impulse
ratios, are presented in Figure B-8. The increased thrust is due to the increased
mass flow caused by the increased pressure differential across the propellant in-
jector orifices. However, the specific impulse decreases because the increase in
thrust is proportionately less than the increase in mass flow. The total increase
in thrust may not be attainable in practice because erosion of the throat will not
be smooth and even. This haphazard erosion will have an adverse effect on the
nozzle efficiency.

In carrying out the numerical evaluation of these relationships
it is shown, as plotted in Figures B-6, B-T, and B-8, that the following amplified
relationships apply in most cases:

a. Chamber pressure decreases with throat erosion. At constant
propellant flow rate it is simply,

PCO Ay

b. TFor fixed area propellant injection orifices at verious in-
jection pressure ratios, the propellant flow rate increases
appreciably, with a nearly corresponding increase in thrust
in the case of low orifice pressure drops.

c. The loss in thrust at constant propellant flow and isentropic
expansion is due only to the change in Cgp, which in turn is a
function of the change in expansion ratio Ae/At°

d. In any case the loss in IS is related simply to the change in
Cp as a first approximation.

Is _ JF
I - C
5o Fo
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B-IIT. CONCLUSIONS

Evaluation of the effects of chamber cooling on rocket motor perform-
ances has shown that the degree of system performance degradation is,

1. Least with regeneratively or radiation cooled motors. The losses
of a radiation cooled chamber can be made to approach that of a
regeneratively cooled system by using a fuel cooled, radiant heat
absorber system. This system is defined here as a cooling unit
in which the radiated heat from the chamber is absorbed by a fuel
cooled absorber.

2. Greater with a transpiration or film cocoled system. This is pri-
marily due to temperature stratification, mixing losses, coolant
pump requirements, and the necessary propellant mass for cooling
purposes.

3. Possibly high with ablative cooling at the throat. The mass of
the ablative material, greater propellant requirement for a given
total impulse, mixing losses, losses due to haphazard erosion of
the ablative material, and temperature stratification all contrib-
ute to the degradation of the system performance.

B-IV. NOMENCLATURE

Symbol Description Unit
A Ares sq in.
C* Characteristic velocity fps
CF Thrust coefficient --
Cp Specific heat at constant pressure Btu/lb °F
Cp Injection orifice discharge coefficient -
F Thrust 1lbs
g Gravitational acceleration ft/secg
H Total enthalpy Btu/1b
h Static enthalpy Btu/1b
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Symbol Description Unit
Isp Specific impulse second
J Joule's constant ft-1b/Btu
& Mass flow parameter --
M Mach number --
P Pressure psia
R Radius in.
R Gas constant --
Temperature °R
A Gas velocity fps
W Weight flow rate pps
S Film thickness in.
/o Density 1b/cu in.

'

Ratio of specific heats

Superscript

* Sonic condition
Subscript

a Ambient

ave Average

c Chamber

Exit

f Film (coolant)

i Ideal

Inj. Injection

o Initial (no coolant flow)

P Primary

t Throat

T Total
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APPENDIX C

FIIM COOLING DESIGN EQUATIONS FOR LIQUID ROCKET MOTORS

A. Ligquid Film Cooling

From Reference 124 a heat balance on the liquid film shows

‘;JC AHC
b (T - T )AL (1)

or

. h (T, - T,) 77 DL

We = e o (2)

AH,

dividing by

. Try°

Wy = Gg M

Wo L h TYDL (Tg - Ty)

Wg G g MDD AH,

'»'vc bh L (Tg - Ty)

W Gg D AH,

. h
Since Sto = for Pr == 1
Gg Cpg

W L (T, - T)

W-‘-’ = 4 St Cpg & ¥

g D AH

c

Since D = —% .

Wo ) 2 Sty L Cp, (Tg - Ty)

We 1/2

(A/77) AH,
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For a combustion chamber

A
¥ = - =
L v L (c.) L
or
W, 2 St, L* Cp, (Tg - Ty)
W, - 1/2
and
T
A = Cp A% = Cp
Po CF
. 1/2
W, 2 St, L* Cpg (Tg - T,) (7)‘/CF PO)
W, 372
g (Cp) A Hy T

is not constant.

. XJ_C _ 28t Cpg (Tg - Tw) AL
o 1/2
g A, (a/m T
or 1/2
W 28ty Cp, (Tg - Tw) 770 Fo
g (A/A%) AH, T

(3)

From the nozzle section a differential approach must be taken since the L/D ratio

(%)
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B. Gas Film Cooling

From Reference 123

y 1
W, Cp, = nfiDL
6 125 n + 0.0k
s v, 0 \
(o< ) f (V—E)
C (o]
W, Sty CPg L 1
Wg Cp, - 1ln n + 0.0k |
0.125 A *
(_J) r (-8)
Ke \

For the combustion chamber

(5)

. 1/2
We 2 8ty L* J/Cp P, / Cp 1
— = —=373 ) . (6)
Wg (Cr) T Cp, - 1ln n + 0.0L
0.125 '
S Vg v
For the nozzle
. 1/2 i
aw, 2 8ty /JCp By Cpy dL )
— = 75 (7
Vg (a/a)™’ ' P, - o n + 0.0k
(8" e (8
e Ve
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C. Transpiration Cooling Design Equations for Liquid Rocket Motors

From Reference 136 from theory

Ga CPc
T, Cp, ot
h g “Pg "0
= o5
h, GcC c 1
EE Gg .Pg Sto

a curve fit of the data of Reference 146 shows

Ge

0.57
-{1/2 M

(8)

where M is the molecular weight ratio of the main gas to the coolant. From Sec-

tion A of this appendix, it was shown by heat balance across the film

We 28t L Cpg (Tg - Ty)

vg  (/mYE AR

Since for tramspiration cooling there is a reduction in St we can write

G

c
W, 2 Sty L Cp, (Tg - Ty) - (1/2 w057 W)
— T g g W
W, . wmP Aw
or for the combustion chamber
0.
Wo 2 st L* CPy (Tg - Ty) 76 Po /2 -(1/2M o
Te ()37 AR 7

(9)

Gg Sto

(10)
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for the nozzle
/ (1/2 05T ey
y 1/2 - (1/2 M7 ——
dWe 2 8ty CPy (Tg - Ty) 7r'Cq B Gg Sto
‘ ( ) e 6L (11)

e (aan? Ax T

C
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